Optimize chatglm2 for bf16 (#8725)
* make chatglm works with bf16 * fix style * support chatglm v1 * fix style * fix style * add chatglm2 file
This commit is contained in:
parent
a73a3e5ff9
commit
bf3591e2ff
3 changed files with 524 additions and 179 deletions
|
|
@ -155,13 +155,22 @@ def optimize(model):
|
|||
if "chatglm2" in model.config._name_or_path:
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from bigdl.llm.transformers.models.chatglm import chatglm_attention_forward_8eb45c
|
||||
from bigdl.llm.transformers.models.chatglm import core_attn_forward_8eb45c
|
||||
from bigdl.llm.transformers.models.chatglm2 import chatglm2_attention_forward_8eb45c
|
||||
from bigdl.llm.transformers.models.chatglm2 import core_attn_forward_8eb45c
|
||||
convert_forward(model,
|
||||
module.SelfAttention,
|
||||
chatglm_attention_forward_8eb45c
|
||||
chatglm2_attention_forward_8eb45c
|
||||
)
|
||||
convert_forward(model,
|
||||
module.CoreAttention,
|
||||
core_attn_forward_8eb45c)
|
||||
elif "chatglm" in model.config._name_or_path:
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from bigdl.llm.transformers.models.chatglm import chatglm_attention_forward
|
||||
convert_forward(model,
|
||||
module.SelfAttention,
|
||||
chatglm_attention_forward
|
||||
)
|
||||
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -14,198 +14,124 @@
|
|||
# limitations under the License.
|
||||
#
|
||||
# This file is adapted from
|
||||
# https://huggingface.co/THUDM/chatglm2-6b/blob/8eb45c842594b8473f291d0f94e7bbe86ffc67d8/modeling_chatglm.py
|
||||
# https://huggingface.co/THUDM/chatglm-6b/blob/63ce1bac4a7a7da57c67448bab39ddbe0e115a19/configuration_chatglm.py
|
||||
#
|
||||
|
||||
import math
|
||||
import torch
|
||||
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
|
||||
import torch.utils.checkpoint
|
||||
import torch.nn.functional as F
|
||||
from typing import Optional, Tuple
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
||||
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
|
||||
# position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
|
||||
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
|
||||
F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
|
||||
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
||||
return q, k
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
KV_CACHE_ALLOC_MIN_LENGTH = 512
|
||||
|
||||
|
||||
def split_tensor_along_last_dim(
|
||||
tensor: torch.Tensor,
|
||||
num_partitions: int,
|
||||
contiguous_split_chunks: bool = False,
|
||||
) -> List[torch.Tensor]:
|
||||
"""Split a tensor along its last dimension.
|
||||
Arguments:
|
||||
tensor: input tensor.
|
||||
num_partitions: number of partitions to split the tensor
|
||||
contiguous_split_chunks: If True, make each chunk contiguous
|
||||
in memory.
|
||||
Returns:
|
||||
A list of Tensors
|
||||
"""
|
||||
# Get the size and dimension.
|
||||
last_dim = tensor.dim() - 1
|
||||
last_dim_size = tensor.size()[last_dim] // num_partitions
|
||||
# Split.
|
||||
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
||||
# Note: torch.split does not create contiguous tensors by default.
|
||||
if contiguous_split_chunks:
|
||||
return tuple(chunk.contiguous() for chunk in tensor_list)
|
||||
|
||||
return tensor_list
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
|
||||
# x: [sq, b, np, hn]
|
||||
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
||||
rot_dim = rope_cache.shape[-2] * 2
|
||||
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
||||
# truncate to support variable sizes
|
||||
rope_cache = rope_cache[:sq]
|
||||
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
|
||||
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
|
||||
x_out2 = torch.stack(
|
||||
[
|
||||
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
|
||||
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
|
||||
],
|
||||
-1,
|
||||
)
|
||||
x_out2 = x_out2.flatten(3)
|
||||
return torch.cat((x_out2, x_pass), dim=-1)
|
||||
|
||||
|
||||
def chatglm_attention_forward_8eb45c(
|
||||
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
|
||||
def attention_fn(
|
||||
self,
|
||||
query_layer,
|
||||
key_layer,
|
||||
value_layer,
|
||||
attention_mask,
|
||||
hidden_size_per_partition,
|
||||
layer_id,
|
||||
layer_past=None,
|
||||
scaling_attention_score=True,
|
||||
use_cache=False,
|
||||
):
|
||||
# hidden_states: [sq, b, h]
|
||||
|
||||
# =================================================
|
||||
# Pre-allocate memory for key-values for inference.
|
||||
# =================================================
|
||||
# =====================
|
||||
# Query, Key, and Value
|
||||
# =====================
|
||||
|
||||
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
|
||||
mixed_x_layer = self.query_key_value(hidden_states)
|
||||
|
||||
if self.multi_query_attention:
|
||||
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
|
||||
[
|
||||
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
|
||||
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
||||
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
query_layer = query_layer.view(
|
||||
query_layer.size()[:-1] + (self.num_attention_heads_per_partition,
|
||||
self.hidden_size_per_attention_head)
|
||||
)
|
||||
key_layer = key_layer.view(
|
||||
key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition,
|
||||
self.hidden_size_per_attention_head)
|
||||
)
|
||||
value_layer = value_layer.view(
|
||||
value_layer.size()[:-1]
|
||||
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
||||
)
|
||||
else:
|
||||
new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads_per_partition,
|
||||
3 * self.hidden_size_per_attention_head)
|
||||
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
||||
|
||||
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
||||
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
||||
|
||||
# apply relative positional encoding (rotary embedding)
|
||||
if rotary_pos_emb is not None:
|
||||
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
|
||||
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
|
||||
key_layer = key_layer.permute(1, 2, 0, 3).contiguous()
|
||||
value_layer = value_layer.permute(1, 2, 0, 3).contiguous()
|
||||
# query_layer = query_layer.permute(1, 2, 0, 3)
|
||||
|
||||
cur_length, batch_size = query_layer.shape[0], query_layer.shape[1]
|
||||
|
||||
if self.multi_query_attention:
|
||||
key_length = key_layer.size(0)
|
||||
query_group_size = self.num_attention_heads_per_partition // \
|
||||
self.num_multi_query_groups_per_partition
|
||||
key_layer = key_layer.permute(1, 2, 0, 3).unsqueeze(-3) # [bs, nh/k, sl, hn]
|
||||
key_layer = key_layer.expand(-1, -1, query_group_size, -1, -1)
|
||||
key_layer = key_layer.contiguous().view((batch_size,
|
||||
self.num_attention_heads_per_partition,
|
||||
key_length,
|
||||
self.hidden_size_per_attention_head))
|
||||
value_layer = value_layer.permute(1, 2, 0, 3).unsqueeze(-3)
|
||||
value_layer = value_layer.expand(-1, -1, query_group_size, -1, -1)
|
||||
value_layer = value_layer.contiguous().view((batch_size,
|
||||
self.num_attention_heads_per_partition,
|
||||
key_length,
|
||||
self.hidden_size_per_attention_head))
|
||||
|
||||
# adjust key and value for inference
|
||||
if kv_cache is not None:
|
||||
cache_k, cache_v = kv_cache
|
||||
past_length = cache_k.size(2)
|
||||
|
||||
if layer_past is not None:
|
||||
past_key, past_value = layer_past[0], layer_past[1]
|
||||
past_length = past_key.size(2)
|
||||
if past_length + cur_length > self.max_cache_length:
|
||||
self.max_cache_length = past_length + cur_length + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
self.kv_cache = (torch.empty(batch_size,
|
||||
self.num_attention_heads_per_partition,
|
||||
self.num_attention_heads,
|
||||
self.max_cache_length,
|
||||
self.hidden_size_per_attention_head,),
|
||||
torch.empty(batch_size,
|
||||
self.num_attention_heads_per_partition,
|
||||
self.num_attention_heads,
|
||||
self.max_cache_length,
|
||||
self.hidden_size_per_attention_head,))
|
||||
self.kv_cache[0][:, :, :past_length, :] = cache_k
|
||||
self.kv_cache[1][:, :, :past_length, :] = cache_v
|
||||
self.kv_cache[0][:, :, :past_length, :] = past_key
|
||||
self.kv_cache[1][:, :, :past_length, :] = past_value
|
||||
|
||||
self.kv_cache[0][:, :, past_length:past_length + cur_length, :] = key_layer
|
||||
self.kv_cache[1][:, :, past_length:past_length + cur_length, :] = value_layer
|
||||
|
||||
key_layer = self.kv_cache[0][:, :, :past_length + cur_length, :]
|
||||
value_layer = self.kv_cache[1][:, :, :past_length + cur_length, :]
|
||||
|
||||
elif use_cache:
|
||||
self.max_cache_length = max(KV_CACHE_ALLOC_MIN_LENGTH, cur_length) \
|
||||
+ KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
self.kv_cache = (torch.empty(batch_size, self.num_attention_heads_per_partition,
|
||||
self.kv_cache = (torch.empty(batch_size, self.num_attention_heads,
|
||||
self.max_cache_length, self.hidden_size_per_attention_head,),
|
||||
torch.empty(batch_size, self.num_attention_heads_per_partition,
|
||||
torch.empty(batch_size, self.num_attention_heads,
|
||||
self.max_cache_length, self.hidden_size_per_attention_head,))
|
||||
self.kv_cache[0][:, :, :cur_length, :] = key_layer
|
||||
self.kv_cache[1][:, :, :cur_length, :] = value_layer
|
||||
|
||||
# seqlen, batch, num_attention_heads, hidden_size_per_attention_head
|
||||
b, nh, seq_len, hidden_size = key_layer.shape
|
||||
|
||||
if use_cache:
|
||||
kv_cache = (key_layer, value_layer)
|
||||
present = (key_layer, value_layer)
|
||||
else:
|
||||
kv_cache = None
|
||||
present = None
|
||||
|
||||
# ==================================
|
||||
# core attention computation
|
||||
# ==================================
|
||||
|
||||
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
|
||||
|
||||
# =================
|
||||
# Output. [sq, b, h]
|
||||
# =================
|
||||
|
||||
output = self.dense(context_layer)
|
||||
|
||||
return output, kv_cache
|
||||
|
||||
|
||||
def core_attn_forward_8eb45c(self, query_layer, key_layer, value_layer, attention_mask):
|
||||
pytorch_major_version = int(torch.__version__.split('.')[0])
|
||||
if query_layer.size(0) > 1 and pytorch_major_version >= 2:
|
||||
query_layer = query_layer.permute(1, 2, 0, 3)
|
||||
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
||||
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
|
||||
key_layer,
|
||||
value_layer,
|
||||
is_causal=True)
|
||||
|
||||
if torch.is_autocast_cpu_enabled():
|
||||
attention_mask = torch.ones(query_layer.shape[2],
|
||||
key_layer.shape[2],
|
||||
dtype=torch.bool).tril(diagonal=0)
|
||||
attention_mask = attention_mask.masked_fill(~attention_mask, -float('inf'), )
|
||||
attention_mask = attention_mask.to(torch.get_autocast_cpu_dtype())
|
||||
query_layer = query_layer.to(torch.get_autocast_cpu_dtype())
|
||||
key_layer = key_layer.to(torch.get_autocast_cpu_dtype())
|
||||
value_layer = value_layer.to(torch.get_autocast_cpu_dtype())
|
||||
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
|
||||
key_layer,
|
||||
value_layer,
|
||||
attention_mask,
|
||||
is_causal=False)
|
||||
else:
|
||||
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
|
||||
key_layer,
|
||||
value_layer,
|
||||
attention_mask,
|
||||
is_causal=True)
|
||||
else:
|
||||
if attention_mask is not None:
|
||||
attention_mask = ~attention_mask
|
||||
attention_mask = attention_mask.masked_fill(~attention_mask, -float('inf'), )
|
||||
if torch.is_autocast_cpu_enabled():
|
||||
query_layer = query_layer.to(torch.get_autocast_cpu_dtype())
|
||||
key_layer = key_layer.to(torch.get_autocast_cpu_dtype())
|
||||
value_layer = value_layer.to(torch.get_autocast_cpu_dtype())
|
||||
attention_mask = attention_mask.to(torch.get_autocast_cpu_dtype())
|
||||
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
|
||||
key_layer,
|
||||
value_layer,
|
||||
|
|
@ -213,8 +139,16 @@ def core_attn_forward_8eb45c(self, query_layer, key_layer, value_layer, attentio
|
|||
context_layer = context_layer.permute(2, 0, 1, 3)
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
||||
context_layer = context_layer.reshape(*new_context_layer_shape)
|
||||
attention_probs = None
|
||||
|
||||
else:
|
||||
# Raw attention scores
|
||||
query_key_layer_scaling_coeff = float(layer_id + 1)
|
||||
if scaling_attention_score:
|
||||
query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
|
||||
|
||||
# ===================================
|
||||
# Raw attention scores. [b, np, s, s]
|
||||
# ===================================
|
||||
|
||||
# [b, np, sq, sk]
|
||||
output_size = (query_layer.size(1), query_layer.size(2),
|
||||
|
|
@ -225,47 +159,44 @@ def core_attn_forward_8eb45c(self, query_layer, key_layer, value_layer, attentio
|
|||
# [sk, b, np, hn] -> [sk, b * np, hn]
|
||||
key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
|
||||
|
||||
# preallocting input tensor: [b * np, sq, sk]
|
||||
matmul_input_buffer = torch.empty(
|
||||
output_size[0] * output_size[1],
|
||||
output_size[2], output_size[3], dtype=query_layer.dtype,
|
||||
device=query_layer.device
|
||||
)
|
||||
|
||||
# Raw attention scores. [b * np, sq, sk]
|
||||
matmul_result = torch.baddbmm(
|
||||
matmul_result = torch.empty(
|
||||
output_size[0] * output_size[1],
|
||||
output_size[2], output_size[3], dtype=query_layer.dtype,
|
||||
)
|
||||
|
||||
torch.baddbmm(
|
||||
matmul_input_buffer,
|
||||
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
||||
key_layer.transpose(1, 2), # [b * np, hn, sk]
|
||||
beta=0.0,
|
||||
alpha=(1.0 / self.norm_factor),
|
||||
)
|
||||
alpha=1.0,
|
||||
out=matmul_result)
|
||||
|
||||
# change view to [b, np, sq, sk]
|
||||
attention_scores = matmul_result.view(*output_size)
|
||||
|
||||
# ===========================
|
||||
# Attention probs and dropout
|
||||
# ===========================
|
||||
|
||||
# attention scores and attention mask [b, np, sq, sk]
|
||||
if self.attention_softmax_in_fp32:
|
||||
if self.scale_mask_softmax:
|
||||
self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
|
||||
attention_probs = self.scale_mask_softmax(attention_scores,
|
||||
attention_mask.contiguous())
|
||||
else:
|
||||
if not (attention_mask == 0).all():
|
||||
# if auto-regressive, skip
|
||||
attention_scores.masked_fill_(attention_mask, -10000.0)
|
||||
dtype = attention_scores.dtype
|
||||
attention_scores = attention_scores.float()
|
||||
if self.coeff is not None:
|
||||
attention_scores = attention_scores * self.coeff
|
||||
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
||||
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
||||
device=attention_scores.device, dtype=torch.bool)
|
||||
attention_mask.tril_()
|
||||
attention_mask = ~attention_mask
|
||||
if attention_mask is not None:
|
||||
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
||||
attention_probs = F.softmax(attention_scores, dim=-1)
|
||||
attention_probs = attention_probs.type_as(value_layer)
|
||||
attention_scores = attention_scores * query_key_layer_scaling_coeff
|
||||
|
||||
attention_probs = F.softmax(attention_scores, dim=-1)
|
||||
|
||||
attention_probs = attention_probs.type(dtype)
|
||||
|
||||
# This is actually dropping out entire tokens to attend to, which might
|
||||
# seem a bit unusual, but is taken from the original Transformer paper.
|
||||
attention_probs = self.attention_dropout(attention_probs)
|
||||
# =========================
|
||||
# Context layer. [sq, b, hp]
|
||||
# =========================
|
||||
|
|
@ -276,18 +207,97 @@ def core_attn_forward_8eb45c(self, query_layer, key_layer, value_layer, attentio
|
|||
# context layer shape: [b, np, sq, hn]
|
||||
output_size = (value_layer.size(0), value_layer.size(1),
|
||||
query_layer.size(0), value_layer.size(3))
|
||||
|
||||
# change view [sk, b * np, hn]
|
||||
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
||||
|
||||
# change view [b * np, sq, sk]
|
||||
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
||||
|
||||
# matmul: [b * np, sq, hn]
|
||||
context_layer = torch.bmm(attention_probs, value_layer)
|
||||
context_layer = torch.empty(
|
||||
output_size[0] * output_size[1],
|
||||
output_size[2], value_layer.size(-1), dtype=value_layer.dtype,)
|
||||
torch.bmm(attention_probs, value_layer, out=context_layer)
|
||||
|
||||
# change view [b, np, sq, hn]
|
||||
context_layer = context_layer.view(*output_size)
|
||||
|
||||
# [b, np, sq, hn] --> [sq, b, np, hn]
|
||||
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
||||
|
||||
# [sq, b, np, hn] --> [sq, b, hp]
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
|
||||
context_layer = context_layer.view(*new_context_layer_shape)
|
||||
|
||||
return context_layer
|
||||
outputs = (context_layer, present, attention_probs)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def chatglm_attention_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_ids,
|
||||
attention_mask: torch.Tensor,
|
||||
layer_id,
|
||||
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
|
||||
use_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
"""
|
||||
hidden_states: [seq_len, batch, hidden_size]
|
||||
attention_mask: [(1, 1), seq_len, seq_len]
|
||||
"""
|
||||
|
||||
# [seq_len, batch, 3 * hidden_size]
|
||||
mixed_raw_layer = self.query_key_value(hidden_states)
|
||||
|
||||
# [seq_len, batch, 3 * hidden_size] -->
|
||||
# [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
|
||||
new_tensor_shape = mixed_raw_layer.size()[:-1] + (
|
||||
self.num_attention_heads_per_partition,
|
||||
3 * self.hidden_size_per_attention_head,
|
||||
)
|
||||
mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)
|
||||
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
||||
(query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)
|
||||
|
||||
if self.position_encoding_2d:
|
||||
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
|
||||
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
|
||||
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
|
||||
position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
|
||||
position_ids[:, 1, :].transpose(0, 1).contiguous()
|
||||
q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
|
||||
q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
|
||||
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
|
||||
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
|
||||
else:
|
||||
position_ids = position_ids.transpose(0, 1)
|
||||
cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
|
||||
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
||||
query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer,
|
||||
cos, sin, position_ids)
|
||||
|
||||
# [seq_len, batch, hidden_size]
|
||||
context_layer, present, attention_probs = attention_fn(
|
||||
self=self,
|
||||
query_layer=query_layer,
|
||||
key_layer=key_layer,
|
||||
value_layer=value_layer,
|
||||
attention_mask=attention_mask,
|
||||
hidden_size_per_partition=self.hidden_size_per_partition,
|
||||
layer_id=layer_id,
|
||||
layer_past=layer_past,
|
||||
use_cache=use_cache
|
||||
)
|
||||
|
||||
output = self.dense(context_layer)
|
||||
|
||||
outputs = (output, present)
|
||||
|
||||
if output_attentions:
|
||||
outputs += (attention_probs,)
|
||||
|
||||
return outputs # output, present, attention_probs
|
||||
|
|
|
|||
326
python/llm/src/bigdl/llm/transformers/models/chatglm2.py
Normal file
326
python/llm/src/bigdl/llm/transformers/models/chatglm2.py
Normal file
|
|
@ -0,0 +1,326 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# This file is adapted from
|
||||
# https://huggingface.co/THUDM/chatglm2-6b/blob/8eb45c842594b8473f291d0f94e7bbe86ffc67d8/modeling_chatglm.py
|
||||
#
|
||||
|
||||
import torch
|
||||
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
KV_CACHE_ALLOC_MIN_LENGTH = 512
|
||||
|
||||
|
||||
def split_tensor_along_last_dim(
|
||||
tensor: torch.Tensor,
|
||||
num_partitions: int,
|
||||
contiguous_split_chunks: bool = False,
|
||||
) -> List[torch.Tensor]:
|
||||
"""Split a tensor along its last dimension.
|
||||
Arguments:
|
||||
tensor: input tensor.
|
||||
num_partitions: number of partitions to split the tensor
|
||||
contiguous_split_chunks: If True, make each chunk contiguous
|
||||
in memory.
|
||||
Returns:
|
||||
A list of Tensors
|
||||
"""
|
||||
# Get the size and dimension.
|
||||
last_dim = tensor.dim() - 1
|
||||
last_dim_size = tensor.size()[last_dim] // num_partitions
|
||||
# Split.
|
||||
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
||||
# Note: torch.split does not create contiguous tensors by default.
|
||||
if contiguous_split_chunks:
|
||||
return tuple(chunk.contiguous() for chunk in tensor_list)
|
||||
|
||||
return tensor_list
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
|
||||
# x: [sq, b, np, hn]
|
||||
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
||||
rot_dim = rope_cache.shape[-2] * 2
|
||||
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
||||
# truncate to support variable sizes
|
||||
rope_cache = rope_cache[:sq]
|
||||
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
|
||||
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
|
||||
x_out2 = torch.stack(
|
||||
[
|
||||
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
|
||||
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
|
||||
],
|
||||
-1,
|
||||
)
|
||||
x_out2 = x_out2.flatten(3)
|
||||
return torch.cat((x_out2, x_pass), dim=-1)
|
||||
|
||||
|
||||
def chatglm2_attention_forward_8eb45c(
|
||||
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
|
||||
):
|
||||
# hidden_states: [sq, b, h]
|
||||
|
||||
# =================================================
|
||||
# Pre-allocate memory for key-values for inference.
|
||||
# =================================================
|
||||
# =====================
|
||||
# Query, Key, and Value
|
||||
# =====================
|
||||
|
||||
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
|
||||
mixed_x_layer = self.query_key_value(hidden_states)
|
||||
|
||||
if self.multi_query_attention:
|
||||
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
|
||||
[
|
||||
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
|
||||
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
||||
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
query_layer = query_layer.view(
|
||||
query_layer.size()[:-1] + (self.num_attention_heads_per_partition,
|
||||
self.hidden_size_per_attention_head)
|
||||
)
|
||||
key_layer = key_layer.view(
|
||||
key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition,
|
||||
self.hidden_size_per_attention_head)
|
||||
)
|
||||
value_layer = value_layer.view(
|
||||
value_layer.size()[:-1]
|
||||
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
||||
)
|
||||
else:
|
||||
new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads_per_partition,
|
||||
3 * self.hidden_size_per_attention_head)
|
||||
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
||||
|
||||
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
||||
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
||||
|
||||
# apply relative positional encoding (rotary embedding)
|
||||
if rotary_pos_emb is not None:
|
||||
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
|
||||
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
|
||||
|
||||
cur_length, batch_size = query_layer.shape[0], query_layer.shape[1]
|
||||
|
||||
if self.multi_query_attention:
|
||||
key_length = key_layer.size(0)
|
||||
query_group_size = self.num_attention_heads_per_partition // \
|
||||
self.num_multi_query_groups_per_partition
|
||||
key_layer = key_layer.permute(1, 2, 0, 3).unsqueeze(-3) # [bs, nh/k, sl, hn]
|
||||
key_layer = key_layer.expand(-1, -1, query_group_size, -1, -1)
|
||||
key_layer = key_layer.contiguous().view((batch_size,
|
||||
self.num_attention_heads_per_partition,
|
||||
key_length,
|
||||
self.hidden_size_per_attention_head))
|
||||
value_layer = value_layer.permute(1, 2, 0, 3).unsqueeze(-3)
|
||||
value_layer = value_layer.expand(-1, -1, query_group_size, -1, -1)
|
||||
value_layer = value_layer.contiguous().view((batch_size,
|
||||
self.num_attention_heads_per_partition,
|
||||
key_length,
|
||||
self.hidden_size_per_attention_head))
|
||||
|
||||
# adjust key and value for inference
|
||||
if kv_cache is not None:
|
||||
cache_k, cache_v = kv_cache
|
||||
past_length = cache_k.size(2)
|
||||
|
||||
if past_length + cur_length > self.max_cache_length:
|
||||
self.max_cache_length = past_length + cur_length + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
self.kv_cache = (torch.empty(batch_size,
|
||||
self.num_attention_heads_per_partition,
|
||||
self.max_cache_length,
|
||||
self.hidden_size_per_attention_head,),
|
||||
torch.empty(batch_size,
|
||||
self.num_attention_heads_per_partition,
|
||||
self.max_cache_length,
|
||||
self.hidden_size_per_attention_head,))
|
||||
self.kv_cache[0][:, :, :past_length, :] = cache_k
|
||||
self.kv_cache[1][:, :, :past_length, :] = cache_v
|
||||
self.kv_cache[0][:, :, past_length:past_length + cur_length, :] = key_layer
|
||||
self.kv_cache[1][:, :, past_length:past_length + cur_length, :] = value_layer
|
||||
|
||||
key_layer = self.kv_cache[0][:, :, :past_length + cur_length, :]
|
||||
value_layer = self.kv_cache[1][:, :, :past_length + cur_length, :]
|
||||
|
||||
elif use_cache:
|
||||
self.max_cache_length = max(KV_CACHE_ALLOC_MIN_LENGTH, cur_length) \
|
||||
+ KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
self.kv_cache = (torch.empty(batch_size, self.num_attention_heads_per_partition,
|
||||
self.max_cache_length, self.hidden_size_per_attention_head,),
|
||||
torch.empty(batch_size, self.num_attention_heads_per_partition,
|
||||
self.max_cache_length, self.hidden_size_per_attention_head,))
|
||||
self.kv_cache[0][:, :, :cur_length, :] = key_layer
|
||||
self.kv_cache[1][:, :, :cur_length, :] = value_layer
|
||||
|
||||
if use_cache:
|
||||
kv_cache = (key_layer, value_layer)
|
||||
else:
|
||||
kv_cache = None
|
||||
|
||||
# ==================================
|
||||
# core attention computation
|
||||
# ==================================
|
||||
|
||||
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
|
||||
|
||||
# =================
|
||||
# Output. [sq, b, h]
|
||||
# =================
|
||||
|
||||
output = self.dense(context_layer)
|
||||
|
||||
return output, kv_cache
|
||||
|
||||
|
||||
def core_attn_forward_8eb45c(self, query_layer, key_layer, value_layer, attention_mask):
|
||||
pytorch_major_version = int(torch.__version__.split('.')[0])
|
||||
if query_layer.size(0) > 1 and pytorch_major_version >= 2:
|
||||
query_layer = query_layer.permute(1, 2, 0, 3)
|
||||
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
||||
|
||||
if torch.is_autocast_cpu_enabled():
|
||||
attention_mask = torch.ones(query_layer.shape[2],
|
||||
key_layer.shape[2],
|
||||
dtype=torch.bool).tril(diagonal=0)
|
||||
attention_mask = attention_mask.masked_fill(~attention_mask, -float('inf'), )
|
||||
attention_mask = attention_mask.to(torch.get_autocast_cpu_dtype())
|
||||
query_layer = query_layer.to(torch.get_autocast_cpu_dtype())
|
||||
key_layer = key_layer.to(torch.get_autocast_cpu_dtype())
|
||||
value_layer = value_layer.to(torch.get_autocast_cpu_dtype())
|
||||
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
|
||||
key_layer,
|
||||
value_layer,
|
||||
attention_mask,
|
||||
is_causal=False)
|
||||
else:
|
||||
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
|
||||
key_layer,
|
||||
value_layer,
|
||||
attention_mask,
|
||||
is_causal=True)
|
||||
else:
|
||||
if attention_mask is not None:
|
||||
attention_mask = ~attention_mask
|
||||
attention_mask = attention_mask.masked_fill(~attention_mask, -float('inf'), )
|
||||
if torch.is_autocast_cpu_enabled():
|
||||
query_layer = query_layer.to(torch.get_autocast_cpu_dtype())
|
||||
key_layer = key_layer.to(torch.get_autocast_cpu_dtype())
|
||||
value_layer = value_layer.to(torch.get_autocast_cpu_dtype())
|
||||
attention_mask = attention_mask.to(torch.get_autocast_cpu_dtype())
|
||||
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
|
||||
key_layer,
|
||||
value_layer,
|
||||
attention_mask)
|
||||
context_layer = context_layer.permute(2, 0, 1, 3)
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
||||
context_layer = context_layer.reshape(*new_context_layer_shape)
|
||||
else:
|
||||
# Raw attention scores
|
||||
|
||||
# [b, np, sq, sk]
|
||||
output_size = (query_layer.size(1), query_layer.size(2),
|
||||
query_layer.size(0), key_layer.size(2))
|
||||
|
||||
# [sq, b, np, hn] -> [sq, b * np, hn]
|
||||
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
||||
# [sk, b, np, hn] -> [sk, b * np, hn]
|
||||
key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
|
||||
|
||||
# preallocting input tensor: [b * np, sq, sk]
|
||||
matmul_input_buffer = torch.empty(
|
||||
output_size[0] * output_size[1],
|
||||
output_size[2], output_size[3], dtype=query_layer.dtype,
|
||||
device=query_layer.device
|
||||
)
|
||||
|
||||
matmul_result = torch.empty(
|
||||
output_size[0] * output_size[1],
|
||||
output_size[2], output_size[3], dtype=query_layer.dtype,
|
||||
)
|
||||
|
||||
# Raw attention scores. [b * np, sq, sk]
|
||||
torch.baddbmm(
|
||||
matmul_input_buffer,
|
||||
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
||||
key_layer.transpose(1, 2), # [b * np, hn, sk]
|
||||
beta=0.0,
|
||||
alpha=(1.0 / self.norm_factor),
|
||||
out=matmul_result
|
||||
)
|
||||
|
||||
# change view to [b, np, sq, sk]
|
||||
attention_scores = matmul_result.view(*output_size)
|
||||
|
||||
# ===========================
|
||||
# Attention probs and dropout
|
||||
# ===========================
|
||||
|
||||
# attention scores and attention mask [b, np, sq, sk]
|
||||
if self.attention_softmax_in_fp32:
|
||||
attention_scores = attention_scores.float()
|
||||
if self.coeff is not None:
|
||||
attention_scores = attention_scores * self.coeff
|
||||
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
||||
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
||||
device=attention_scores.device, dtype=torch.bool)
|
||||
attention_mask.tril_()
|
||||
attention_mask = ~attention_mask
|
||||
if attention_mask is not None:
|
||||
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
||||
attention_probs = F.softmax(attention_scores, dim=-1)
|
||||
attention_probs = attention_probs.type_as(value_layer)
|
||||
|
||||
# This is actually dropping out entire tokens to attend to, which might
|
||||
# seem a bit unusual, but is taken from the original Transformer paper.
|
||||
attention_probs = self.attention_dropout(attention_probs)
|
||||
# =========================
|
||||
# Context layer. [sq, b, hp]
|
||||
# =========================
|
||||
|
||||
# value_layer -> context layer.
|
||||
# [sk, b, np, hn] --> [b, np, sq, hn]
|
||||
|
||||
# context layer shape: [b, np, sq, hn]
|
||||
output_size = (value_layer.size(0), value_layer.size(1),
|
||||
query_layer.size(0), value_layer.size(3))
|
||||
# change view [sk, b * np, hn]
|
||||
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
||||
# change view [b * np, sq, sk]
|
||||
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
||||
# matmul: [b * np, sq, hn]
|
||||
context_layer = torch.empty(
|
||||
output_size[0] * output_size[1],
|
||||
output_size[2], value_layer.size(-1), dtype=value_layer.dtype,
|
||||
)
|
||||
torch.bmm(attention_probs, value_layer, out=context_layer)
|
||||
# change view [b, np, sq, hn]
|
||||
context_layer = context_layer.view(*output_size)
|
||||
# [b, np, sq, hn] --> [sq, b, np, hn]
|
||||
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
||||
# [sq, b, np, hn] --> [sq, b, hp]
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
||||
context_layer = context_layer.view(*new_context_layer_shape)
|
||||
|
||||
return context_layer
|
||||
Loading…
Reference in a new issue