Update Automl pytorch quickstart (#3306)
* update quick start doc * change code and link * Update image * colab link * update link and name * Update install guide link
This commit is contained in:
parent
b622d60048
commit
bc8d5733e8
1 changed files with 12 additions and 12 deletions
|
|
@ -2,7 +2,7 @@
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/analytics-zoo/blob/master/docs/docs/colab-notebook/orca/quickstart/autoestimator_pytorch_lenet_mnist.ipynb) [View source on GitHub](https://github.com/intel-analytics/analytics-zoo/blob/master/docs/docs/colab-notebook/orca/quickstart/autoestimator_pytorch_lenet_mnist.ipynb)
|
[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/branch-2.0/python/orca/colab-notebook/quickstart/autoestimator_pytorch_lenet_mnist.ipynb) [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/orca/colab-notebook/quickstart/autoestimator_pytorch_lenet_mnist.ipynb)
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
|
|
@ -10,18 +10,18 @@
|
||||||
|
|
||||||
### **Step 0: Prepare Environment**
|
### **Step 0: Prepare Environment**
|
||||||
|
|
||||||
[Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](../../UserGuide/python.md) for more details.
|
[Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/distributed-tuning.html#install) for more details.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
conda create -n zoo python=3.7 # zoo is conda environment name, you can use any name you like.
|
conda create -n bigdl-orca-automl python=3.7 # zoo is conda environment name, you can use any name you like.
|
||||||
conda activate zoo
|
conda activate bigdl-orca-automl
|
||||||
pip install analytics-zoo[ray]
|
pip install bigdl-orca[automl]
|
||||||
pip install torch==1.7.1 torchvision==0.8.2
|
pip install torch==1.8.1 torchvision==0.9.1
|
||||||
```
|
```
|
||||||
|
|
||||||
### **Step 1: Init Orca Context**
|
### **Step 1: Init Orca Context**
|
||||||
```python
|
```python
|
||||||
from zoo.orca import init_orca_context, stop_orca_context
|
from bigdl.orca import init_orca_context, stop_orca_context
|
||||||
|
|
||||||
if cluster_mode == "local":
|
if cluster_mode == "local":
|
||||||
init_orca_context(cores=4, memory="2g", init_ray_on_spark=True) # run in local mode
|
init_orca_context(cores=4, memory="2g", init_ray_on_spark=True) # run in local mode
|
||||||
|
|
@ -113,10 +113,10 @@ def test_loader_creator(config):
|
||||||
### **Step 4: Define Search Space**
|
### **Step 4: Define Search Space**
|
||||||
You should define a dictionary as your hyper-parameter search space.
|
You should define a dictionary as your hyper-parameter search space.
|
||||||
|
|
||||||
The keys are hyper-parameter names which should be the same with those in your creators, and you can specify how you want to sample each hyper-parameter in the values of the search space. See [automl.hp](https://analytics-zoo.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-hp) for more details.
|
The keys are hyper-parameter names which should be the same with those in your creators, and you can specify how you want to sample each hyper-parameter in the values of the search space. See [automl.hp](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-hp) for more details.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from zoo.orca.automl import hp
|
from bigdl.orca.automl import hp
|
||||||
|
|
||||||
search_space = {
|
search_space = {
|
||||||
"fc1_hidden_size": hp.choice([500, 600]),
|
"fc1_hidden_size": hp.choice([500, 600]),
|
||||||
|
|
@ -127,15 +127,15 @@ search_space = {
|
||||||
|
|
||||||
### **Step 5: Automatically Fit and Search with Orca AutoEstimator**
|
### **Step 5: Automatically Fit and Search with Orca AutoEstimator**
|
||||||
|
|
||||||
First, create an `AutoEstimator`. You can refer to [AutoEstimator API doc](https://analytics-zoo.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details.
|
First, create an `AutoEstimator`. You can refer to [AutoEstimator API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from zoo.orca.automl.auto_estimator import AutoEstimator
|
from bigdl.orca.automl.auto_estimator import AutoEstimator
|
||||||
|
|
||||||
auto_est = AutoEstimator.from_torch(model_creator=model_creator,
|
auto_est = AutoEstimator.from_torch(model_creator=model_creator,
|
||||||
optimizer=optim_creator,
|
optimizer=optim_creator,
|
||||||
loss=criterion,
|
loss=criterion,
|
||||||
logs_dir="/tmp/zoo_automl_logs",
|
logs_dir="/tmp/orca_automl_logs",
|
||||||
resources_per_trial={"cpu": 2},
|
resources_per_trial={"cpu": 2},
|
||||||
name="lenet_mnist")
|
name="lenet_mnist")
|
||||||
```
|
```
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue