diff --git a/README.md b/README.md index 2be0b999..5bef9211 100644 --- a/README.md +++ b/README.md @@ -10,6 +10,26 @@ > - *It provides seamless integration with [llama.cpp](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html), [Ollama](https://ipex-llm.readthedocs.io/en/main/doc/LLM/Quickstart/ollama_quickstart.html), [Text-Generation-WebUI](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/webui_quickstart.html), [HuggingFace transformers](python/llm/example/GPU/HF-Transformers-AutoModels), [LangChain](python/llm/example/GPU/LangChain), [LlamaIndex](python/llm/example/GPU/LlamaIndex), [DeepSpeed-AutoTP](python/llm/example/GPU/Deepspeed-AutoTP), [vLLM](python/llm/example/GPU/vLLM-Serving), [FastChat](python/llm/src/ipex_llm/serving/fastchat), [Axolotl](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/axolotl_quickstart.html), [HuggingFace PEFT](python/llm/example/GPU/LLM-Finetuning), [HuggingFace TRL](python/llm/example/GPU/LLM-Finetuning/DPO), [AutoGen](python/llm/example/CPU/Applications/autogen), [ModeScope](python/llm/example/GPU/ModelScope-Models), etc.* > - ***50+ models** have been optimized/verified on `ipex-llm` (including LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, RWKV, and more); see the complete list [here](#verified-models).* +## `ipex-llm` Performance +See the **Token Generation Speed** on *Intel Core Ultra* and *Intel Arc GPU* below[^1] (and refer to [[2]](https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-meta-llama3-with-intel-ai-solutions.html)[[3]](https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-microsoft-phi-3-models-intel-ai-soln.html)[[4]](https://www.intel.com/content/www/us/en/developer/articles/technical/intel-ai-solutions-accelerate-alibaba-qwen2-llms.html) for more details). + + + + + + +
+ + + + + + + +
+ +You may follow the [guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/benchmark_quickstart.html) to run `ipex-llm` performance benchmark yourself. + ## `ipex-llm` Demo See demos of running local LLMs *on Intel Iris iGPU, Intel Core Ultra iGPU, single-card Arc GPU, or multi-card Arc GPUs* using `ipex-llm` below.