Update distributed-tuning.md (#8324)
This commit is contained in:
		
							parent
							
								
									8840dadd86
								
							
						
					
					
						commit
						bc11a2b1cd
					
				
					 1 changed files with 4 additions and 4 deletions
				
			
		| 
						 | 
				
			
			@ -93,7 +93,7 @@ Finally, user can get the best learned model and the best hyper-parameters for f
 | 
			
		|||
best_model = auto_est.get_best_model() # a `torch.nn.Module` object
 | 
			
		||||
best_config = auto_est.get_best_config() # a dictionary of hyper-parameter names and values.
 | 
			
		||||
```
 | 
			
		||||
View the related [Python API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details.
 | 
			
		||||
View the related [Python API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Orca/automl.html#orca-automl-auto-estimator) for more details.
 | 
			
		||||
 | 
			
		||||
### 3. TensorFlow/Keras AutoEstimator
 | 
			
		||||
Users can create an `AutoEstimator` for TensorFlow Keras from a `tf.keras` model (using a *Model Creator Function*). For example:
 | 
			
		||||
| 
						 | 
				
			
			@ -130,14 +130,14 @@ Finally, user can get the best learned model and the best hyper-parameters for f
 | 
			
		|||
best_model = auto_est.get_best_model() # a `torch.nn.Module` object
 | 
			
		||||
best_config = auto_est.get_best_config() # a dictionary of hyper-parameter names and values.
 | 
			
		||||
```
 | 
			
		||||
View the related [Python API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details.
 | 
			
		||||
View the related [Python API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Orca/automl.html#orca-automl-auto-estimator) for more details.
 | 
			
		||||
 | 
			
		||||
### 4. Search Space and Search Algorithms
 | 
			
		||||
For Hyper-parameter Optimization, user should define the search space of various hyper-parameter values for neural network training, as well as how to search through the chosen hyper-parameter space.
 | 
			
		||||
 | 
			
		||||
#### 4.1 Basic Search Algorithms
 | 
			
		||||
 | 
			
		||||
For basic search algorithms like **Grid Search** and **Random Search**, we provide several sampling functions with `automl.hp`. See [API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-hp) for more details.
 | 
			
		||||
For basic search algorithms like **Grid Search** and **Random Search**, we provide several sampling functions with `automl.hp`. See [API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Orca/automl.html#orca-automl-hp) for more details.
 | 
			
		||||
 | 
			
		||||
`AutoEstimator` requires a dictionary for the `search_space` argument in `fit`.
 | 
			
		||||
In the dictionary, the keys are the hyper-parameter names, and the values specify how to sample the search spaces for the hyper-parameters.
 | 
			
		||||
| 
						 | 
				
			
			@ -180,7 +180,7 @@ auto_estimator.fit(
 | 
			
		|||
    search_alg="bayesopt",
 | 
			
		||||
)
 | 
			
		||||
```
 | 
			
		||||
See [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details.
 | 
			
		||||
See [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Orca/automl.html#orca-automl-auto-estimator) for more details.
 | 
			
		||||
 | 
			
		||||
### 5. Scheduler
 | 
			
		||||
*Scheduler* can stop/pause/tweak the hyper-parameters of running trials, making the hyper-parameter tuning process much efficient.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue