Mark Color Modification
This commit is contained in:
		
							parent
							
								
									b151a9b672
								
							
						
					
					
						commit
						bb34c6e325
					
				
					 1 changed files with 97 additions and 85 deletions
				
			
		| 
						 | 
				
			
			@ -28,7 +28,7 @@ def highlight_vals(val, max=3.0, color1='red', color2='green', color3='yellow',
 | 
			
		|||
            return 'background-color: %s' % color1
 | 
			
		||||
        elif val <= -max:
 | 
			
		||||
            return 'background-color: %s' % color2
 | 
			
		||||
        elif val != 0.0 and not pd.isna(val) and is_last:
 | 
			
		||||
        elif val != 0.0 and is_last:
 | 
			
		||||
            return 'background-color: %s' % color3
 | 
			
		||||
    else:
 | 
			
		||||
        return ''
 | 
			
		||||
| 
						 | 
				
			
			@ -38,7 +38,7 @@ def nonzero_min(lst):
 | 
			
		|||
    return min(non_zero_lst) if non_zero_lst else None
 | 
			
		||||
 | 
			
		||||
def is_diffs_within_normal_range(diff_ppl_result, threshold=5.0):
 | 
			
		||||
    return not any(diff < (-threshold) for diff in diff_ppl_result + diff_ppl_result if isinstance(diff, float))#diff_en + diff_zh 
 | 
			
		||||
    return not any(diff < (-threshold) for diff in diff_ppl_result if isinstance(diff, float))
 | 
			
		||||
 | 
			
		||||
def add_to_dict(dict, key, value):
 | 
			
		||||
    if key not in dict:
 | 
			
		||||
| 
						 | 
				
			
			@ -58,17 +58,11 @@ def create_fp16_dict(fp16_path):
 | 
			
		|||
    fp16_dict = {}
 | 
			
		||||
    for _, row in fp16_df.iterrows():
 | 
			
		||||
        model = row['Model']
 | 
			
		||||
        # print("I want to test the ppl_result row", row['ppl_result'])
 | 
			
		||||
        # Formalize the data to have 2 decimal places
 | 
			
		||||
        # fp16_dict[model] = {
 | 
			
		||||
        #     'en': "{:.2f}".format(row['en']),
 | 
			
		||||
        #     'zh': "{:.2f}".format(row['zh'])
 | 
			
		||||
        # }
 | 
			
		||||
        
 | 
			
		||||
        fp16_dict[model] = {
 | 
			
		||||
            'ppl_result': "{:.2f}".format(row['ppl_result'])
 | 
			
		||||
            # 'zh': "{:.2f}".format(row['zh'])
 | 
			
		||||
        }
 | 
			
		||||
        # print(fp16_dict[model])
 | 
			
		||||
        
 | 
			
		||||
    return fp16_dict
 | 
			
		||||
 | 
			
		||||
def calculate_percentage_difference(current, fp16):
 | 
			
		||||
| 
						 | 
				
			
			@ -112,10 +106,9 @@ def main():
 | 
			
		|||
 | 
			
		||||
        # Add display of FP16 values for each model and add percentage difference column
 | 
			
		||||
 | 
			
		||||
    for task in ['ppl_result']:#['en', 'zh']:
 | 
			
		||||
        latest_csv[f'{task}_FP16'] = latest_csv['Model'].apply(lambda model: fp16_dict.get(model, {}).get(task, 'N/A'))
 | 
			
		||||
        # print("This is the stuff I want to check",latest_csv['Model'].apply(lambda model: fp16_dict.get(model, {}).get(task, 'N/A') == 'N/A'))
 | 
			
		||||
        latest_csv[f'{task}_diff_FP16(%)'] = latest_csv.apply(lambda row: calculate_percentage_difference(row[task], row[f'{task}_FP16']), axis=1)
 | 
			
		||||
    task = 'ppl_result'
 | 
			
		||||
    latest_csv[f'{task}_FP16'] = latest_csv['Model'].apply(lambda model: fp16_dict.get(model, {}).get(task, 'N/A'))
 | 
			
		||||
    latest_csv[f'{task}_diff_FP16(%)'] = latest_csv.apply(lambda row: calculate_percentage_difference(row[task], row[f'{task}_FP16']), axis=1)
 | 
			
		||||
    print(csv_files)
 | 
			
		||||
 | 
			
		||||
    if len(csv_files)>1:
 | 
			
		||||
| 
						 | 
				
			
			@ -127,13 +120,8 @@ def main():
 | 
			
		|||
 | 
			
		||||
        last_ppl_result=['']*len(latest_csv.index)
 | 
			
		||||
        diff_ppl_result=['']*len(latest_csv.index)
 | 
			
		||||
        # last_en=['']*len(latest_csv.index)
 | 
			
		||||
        # diff_en=['']*len(latest_csv.index)
 | 
			
		||||
        # last_zh=['']*len(latest_csv.index)
 | 
			
		||||
        # diff_zh=['']*len(latest_csv.index)
 | 
			
		||||
 | 
			
		||||
        ppl_result = 'ppl_result'#en='en'
 | 
			
		||||
        #zh='zh'
 | 
			
		||||
        ppl_result = 'ppl_result'
 | 
			
		||||
 | 
			
		||||
        csv_dict = {}
 | 
			
		||||
        for csv_file in csv_files:
 | 
			
		||||
| 
						 | 
				
			
			@ -143,20 +131,15 @@ def main():
 | 
			
		|||
                current_csv_precision=current_csv_row['Precision'].strip()
 | 
			
		||||
                
 | 
			
		||||
                current_csv_model_ppl_result=current_csv_model+'-'+current_csv_precision+'-'+'ppl_result'
 | 
			
		||||
                # current_csv_model_en=current_csv_model+'-'+current_csv_precision+'-'+'en'
 | 
			
		||||
                # current_csv_model_zh=current_csv_model+'-'+current_csv_precision+'-'+'zh'
 | 
			
		||||
                
 | 
			
		||||
                add_to_dict(csv_dict, current_csv_model_ppl_result, current_csv_row[ppl_result])
 | 
			
		||||
                # add_to_dict(csv_dict, current_csv_model_en, current_csv_row[en])
 | 
			
		||||
                # add_to_dict(csv_dict, current_csv_model_zh, current_csv_row[zh]) 
 | 
			
		||||
 | 
			
		||||
                
 | 
			
		||||
        for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
 | 
			
		||||
 | 
			
		||||
            latest_csv_model=latest_csv_row['Model'].strip()
 | 
			
		||||
            latest_csv_precision=latest_csv_row['Precision'].strip()
 | 
			
		||||
            latest_ppl_result=latest_csv_row[ppl_result]#latest_en=latest_csv_row[en]
 | 
			
		||||
            latest_ppl_result=latest_csv_row[ppl_result]
 | 
			
		||||
            print("This is the latest_ppl_result",latest_ppl_result)
 | 
			
		||||
            # latest_zh=latest_csv_row[zh]
 | 
			
		||||
 | 
			
		||||
            in_previous_flag=False
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -167,84 +150,113 @@ def main():
 | 
			
		|||
 | 
			
		||||
                if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision:
 | 
			
		||||
 | 
			
		||||
                    previous_ppl_result=previous_csv_row[ppl_result] #previous_en=previous_csv_row[en]
 | 
			
		||||
                    previous_ppl_result=previous_csv_row[ppl_result] 
 | 
			
		||||
                    print("This is the previous_ppl_result", previous_ppl_result)
 | 
			
		||||
                    # previous_zh=previous_csv_row[zh]
 | 
			
		||||
                    if previous_ppl_result > 0.0:# or previous_zh > 0.0:
 | 
			
		||||
 | 
			
		||||
                    if previous_ppl_result > 0.0:
 | 
			
		||||
                        last_ppl_result[latest_csv_ind]=previous_ppl_result
 | 
			
		||||
                        diff_ppl_result[latest_csv_ind]=round((latest_ppl_result-previous_ppl_result)*100/previous_ppl_result,2)
 | 
			
		||||
                        # last_zh[latest_csv_ind]=previous_zh
 | 
			
		||||
                        # diff_zh[latest_csv_ind]=round((latest_zh-previous_zh)*100/previous_zh,2)
 | 
			
		||||
                        in_previous_flag=True
 | 
			
		||||
 | 
			
		||||
                        # last_en[latest_csv_ind]=previous_en
 | 
			
		||||
                        # diff_en[latest_csv_ind]=round((latest_en-previous_en)*100/previous_en,2)
 | 
			
		||||
                        # last_zh[latest_csv_ind]=previous_zh
 | 
			
		||||
                        # diff_zh[latest_csv_ind]=round((latest_zh-previous_zh)*100/previous_zh,2)
 | 
			
		||||
                        # in_previous_flag=True
 | 
			
		||||
 | 
			
		||||
            if not in_previous_flag:
 | 
			
		||||
                last_ppl_result[latest_csv_ind]=pd.NA
 | 
			
		||||
                diff_ppl_result[latest_csv_ind]=pd.NA
 | 
			
		||||
                # last_zh[latest_csv_ind]=pd.NA
 | 
			
		||||
                # diff_zh[latest_csv_ind]=pd.NA
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        latest_csv.insert(loc=6,column='last_ppl_result',value=last_ppl_result)
 | 
			
		||||
        latest_csv.insert(loc=7,column='last_diff_ppl_result(%)',value=diff_ppl_result)
 | 
			
		||||
        # latest_csv.insert(loc=11,column='last_zh',value=last_zh)
 | 
			
		||||
        # latest_csv.insert(loc=12,column='diff_zh(%)',value=diff_zh)
 | 
			
		||||
        latest_csv.insert(loc=7,column='ppl_result_diff_last(%)',value=diff_ppl_result)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        diffs_within_normal_range = is_diffs_within_normal_range(diff_ppl_result, threshold=highlight_threshold)#en, diff_zh, threshold=highlight_threshold)
 | 
			
		||||
        diffs_within_normal_range = is_diffs_within_normal_range(diff_ppl_result, threshold=highlight_threshold)
 | 
			
		||||
 | 
			
		||||
        subset1=['last_diff_ppl_result(%)']#['diff_en(%)','diff_zh(%)']
 | 
			
		||||
        subset1='ppl_result_diff_last(%)'
 | 
			
		||||
        
 | 
			
		||||
        columns={'ppl_result': '{:.2f}', 'last_ppl_result': '{:.2f}', 'last_diff_ppl_result(%)': '{:.2f}'}
 | 
			
		||||
                #{'en': '{:.2f}', 'zh': '{:.2f}', 'last_en': '{:.2f}', 'diff_en(%)': '{:.2f}',
 | 
			
		||||
                #'last_zh': '{:.2f}', 'diff_zh(%)': '{:.2f}'}
 | 
			
		||||
        # columns will be different: columns_sec={'ppl_result': '{:.2f}'}
 | 
			
		||||
        columns={'ppl_result': '{:.2f}', 'last_ppl_result': '{:.2f}', 'ppl_result_diff_last(%)': '{:.2f}'}
 | 
			
		||||
        # This is the same
 | 
			
		||||
        latest_csv.drop('Index', axis=1, inplace=True)
 | 
			
		||||
        # subset is different
 | 
			
		||||
 | 
			
		||||
        styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, is_last=True), subset=subset1)
 | 
			
		||||
        for task in ['ppl_result']:#['en', 'zh']:
 | 
			
		||||
            styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=[f'{task}_diff_FP16(%)'])
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        # add css style to restrict width and wrap text
 | 
			
		||||
        styled_df.set_table_styles([{
 | 
			
		||||
            'selector': 'th, td',
 | 
			
		||||
            'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
 | 
			
		||||
        }], overwrite=False)
 | 
			
		||||
        
 | 
			
		||||
        html_output = styled_df.set_table_attributes("border=1").to_html()
 | 
			
		||||
 | 
			
		||||
        with open(daily_html, 'w') as f:
 | 
			
		||||
            f.write(html_output)
 | 
			
		||||
        styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=True), subset=['ppl_result_diff_last(%)'])
 | 
			
		||||
        styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=['ppl_result_diff_FP16(%)'])
 | 
			
		||||
 
 | 
			
		||||
    else:
 | 
			
		||||
        columns={'ppl_result': '{:.2f}'}
 | 
			
		||||
        latest_csv.drop('Index', axis=1, inplace=True)
 | 
			
		||||
        columns_sec={'ppl_result': '{:.2f}'}
 | 
			
		||||
                #{'en': '{:.2f}', 'zh': '{:.2f}', 'last_en': '{:.2f}', 'diff_en(%)': '{:.2f}',
 | 
			
		||||
                #'last_zh': '{:.2f}', 'diff_zh(%)': '{:.2f}'}
 | 
			
		||||
        styled_df = latest_csv.style.format(columns_sec).applymap(lambda val: highlight_vals(val, max=3.0, is_last=True))#, subset=subset1)
 | 
			
		||||
        for task in ['ppl_result']:#['en', 'zh']:
 | 
			
		||||
            styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=[f'{task}_diff_FP16(%)'])
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        # add css style to restrict width and wrap text
 | 
			
		||||
        styled_df.set_table_styles([{
 | 
			
		||||
            'selector': 'th, td',
 | 
			
		||||
            'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
 | 
			
		||||
        }], overwrite=False)
 | 
			
		||||
        
 | 
			
		||||
        html_output = styled_df.set_table_attributes("border=1").to_html()
 | 
			
		||||
 | 
			
		||||
        with open(daily_html, 'w') as f:
 | 
			
		||||
            f.write(html_output)
 | 
			
		||||
        # latest_csv.to_html(daily_html)
 | 
			
		||||
 | 
			
		||||
        styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=['ppl_result_diff_FP16(%)'])
 | 
			
		||||
 
 | 
			
		||||
    # add css style to restrict width and wrap text
 | 
			
		||||
    styled_df.set_table_styles([{
 | 
			
		||||
        'selector': 'th, td',
 | 
			
		||||
        'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
 | 
			
		||||
    }], overwrite=False)
 | 
			
		||||
   
 | 
			
		||||
    html_output = styled_df.set_table_attributes("border=1").to_html()
 | 
			
		||||
 
 | 
			
		||||
    with open(daily_html, 'w') as f:
 | 
			
		||||
        f.write(html_output)
 | 
			
		||||
 
 | 
			
		||||
    if args.baseline_path and not diffs_within_normal_range:
 | 
			
		||||
        print("The diffs are outside the normal range: %" + str(highlight_threshold))
 | 
			
		||||
        return 1 
 | 
			
		||||
        return 1
 | 
			
		||||
    return 0
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    sys.exit(main())
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
        
 | 
			
		||||
#         styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, is_last=True), subset=subset1)
 | 
			
		||||
        
 | 
			
		||||
#         # These are the same: 
 | 
			
		||||
#         task = 'ppl_result'       
 | 
			
		||||
#         styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=[f'{task}_diff_FP16(%)'])
 | 
			
		||||
#         # add css style to restrict width and wrap text
 | 
			
		||||
#         styled_df.set_table_styles([{
 | 
			
		||||
#             'selector': 'th, td',
 | 
			
		||||
#             'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
 | 
			
		||||
#         }], overwrite=False)
 | 
			
		||||
        
 | 
			
		||||
#         html_output = styled_df.set_table_attributes("border=1").to_html()
 | 
			
		||||
 | 
			
		||||
#         with open(daily_html, 'w') as f:
 | 
			
		||||
#             f.write(html_output)
 | 
			
		||||
#     else:
 | 
			
		||||
#         latest_csv.drop('Index', axis=1, inplace=True)
 | 
			
		||||
#         columns_sec={'ppl_result': '{:.2f}'}
 | 
			
		||||
#         styled_df = latest_csv.style.format(columns_sec).applymap(lambda val: highlight_vals(val, max=3.0, is_last=True))#, subset=subset1)
 | 
			
		||||
#         task = 'ppl_result'
 | 
			
		||||
#         styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=highlight_threshold, is_last=False), subset=[f'{task}_diff_FP16(%)'])
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
#         # add css style to restrict width and wrap text
 | 
			
		||||
#         styled_df.set_table_styles([{
 | 
			
		||||
#             'selector': 'th, td',
 | 
			
		||||
#             'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
 | 
			
		||||
#         }], overwrite=False)
 | 
			
		||||
        
 | 
			
		||||
#         html_output = styled_df.set_table_attributes("border=1").to_html()
 | 
			
		||||
 | 
			
		||||
#         with open(daily_html, 'w') as f:
 | 
			
		||||
#             f.write(html_output)
 | 
			
		||||
 | 
			
		||||
#     if args.baseline_path and not diffs_within_normal_range:
 | 
			
		||||
#         print("The diffs are outside the normal range: %" + str(highlight_threshold))
 | 
			
		||||
#         return 1 
 | 
			
		||||
#     return 0
 | 
			
		||||
 | 
			
		||||
# if __name__ == "__main__":
 | 
			
		||||
#     sys.exit(main())
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue