LLM: Implement hf low_cpu_mem_usage with 1xbinary file peak memory on transformer int4 (#8731)
* 1x peak memory
This commit is contained in:
parent
5d90ca2dac
commit
bb31d4fe80
3 changed files with 203 additions and 137 deletions
|
|
@ -44,27 +44,10 @@ import importlib
|
|||
|
||||
|
||||
def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
|
||||
current_key_name=None, convert_shape_only=False):
|
||||
from bigdl.llm.transformers.linear_quant import LinearQuant, ParamsQuant
|
||||
current_key_name=None):
|
||||
from bigdl.llm.transformers.linear_quant import LinearQuant, FP4Params
|
||||
has_been_replaced = False
|
||||
|
||||
# Through our method, certain layers that were initialized on the device "meta"
|
||||
# (associated with the lazy initialization strategy of low_cpu_mem_usage) are not
|
||||
# being correctly moved back to the CPU device for some reason. Therefore, we are
|
||||
# moving these layers back to the CPU here in order to prevent the occurrence
|
||||
# of NoImplementnError. Details refer to:
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3110
|
||||
model_state_dict = model.state_dict()
|
||||
for name, param in model.named_parameters():
|
||||
if param.data.device == torch.device('meta'):
|
||||
from accelerate.utils.modeling import set_module_tensor_to_device
|
||||
param = model_state_dict[name]
|
||||
set_module_tensor_to_device(model,
|
||||
name,
|
||||
"cpu",
|
||||
torch.empty(*param.size(), dtype=torch.float32))
|
||||
del model_state_dict
|
||||
|
||||
for name, module in model.named_children():
|
||||
if current_key_name is None:
|
||||
current_key_name = []
|
||||
|
|
@ -80,17 +63,18 @@ def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
|
|||
module.bias is not None,
|
||||
)
|
||||
|
||||
device_type = module.weight.data.device.type
|
||||
# Copy the weights
|
||||
paramsQuant = ParamsQuant(data=module.weight.data,
|
||||
requires_grad=False,
|
||||
quantized=False,
|
||||
convert_shape_only=convert_shape_only,
|
||||
_shape=None,
|
||||
qtype=qtype).to("cpu")
|
||||
paramsQuant = FP4Params(data=module.weight.data,
|
||||
requires_grad=False,
|
||||
quantized=False,
|
||||
_shape=None,
|
||||
qtype=qtype).to(device_type)
|
||||
new_linear._parameters['weight'] = paramsQuant
|
||||
|
||||
if module.bias is not None:
|
||||
new_linear._parameters['bias'] = nn.Parameter(module.bias.data).to("cpu")
|
||||
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
|
||||
.to(device_type)
|
||||
|
||||
model._modules[name] = new_linear
|
||||
has_been_replaced = True
|
||||
|
|
@ -106,15 +90,14 @@ def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
|
|||
qtype,
|
||||
modules_to_not_convert,
|
||||
current_key_name,
|
||||
convert_shape_only,
|
||||
)
|
||||
return model, has_been_replaced
|
||||
|
||||
|
||||
def ggml_convert_quant(model, qtype, optimize_model=True, convert_shape_only=False):
|
||||
def ggml_convert_quant(model, qtype, optimize_model=True, device="cpu"):
|
||||
modules_to_not_convert = [] # ["lm_head"]
|
||||
model, has_been_replaced = _replace_with_quant_linear(
|
||||
model, qtype, modules_to_not_convert, None, convert_shape_only=convert_shape_only
|
||||
model, qtype, modules_to_not_convert, None
|
||||
)
|
||||
if not has_been_replaced:
|
||||
warnings.warn(
|
||||
|
|
@ -123,8 +106,11 @@ def ggml_convert_quant(model, qtype, optimize_model=True, convert_shape_only=Fal
|
|||
"instead of Linear layers. Please double check your model architecture, or submit "
|
||||
"an issue on github if you think this is a bug."
|
||||
)
|
||||
else:
|
||||
elif device == "cpu":
|
||||
model.to(torch.float32)
|
||||
elif device == "meta":
|
||||
# Do nothing here for weights are empty.
|
||||
pass
|
||||
|
||||
if optimize_model:
|
||||
model = optimize(model)
|
||||
|
|
|
|||
|
|
@ -59,7 +59,7 @@ TORCH_LINEAR_THRESHOLD = 96
|
|||
SYM_INT4 = ggml_tensor_qtype["sym_int4"]
|
||||
|
||||
|
||||
def ggml_convert_quant(tensor: torch.Tensor, qtype: int, convert_shape_only=False):
|
||||
def ggml_convert_quant(tensor: torch.Tensor, qtype: int, device=None):
|
||||
QK = ggml.ggml_qk_size(qtype)
|
||||
block_size_in_bytes = ggml.ggml_type_size(qtype)
|
||||
|
||||
|
|
@ -75,12 +75,12 @@ def ggml_convert_quant(tensor: torch.Tensor, qtype: int, convert_shape_only=Fals
|
|||
"Last dim of input tensor must be multiple of 64")
|
||||
|
||||
dst_size = (n // QK) * block_size_in_bytes
|
||||
dst_tensor = torch.empty(dst_size, dtype=torch.uint8)
|
||||
dst = ctypes.c_void_p(dst_tensor.data.data_ptr())
|
||||
dst_tensor = torch.empty(dst_size, dtype=torch.uint8,
|
||||
device=device)
|
||||
|
||||
hist = (ctypes.c_int64 * 16)()
|
||||
|
||||
if not convert_shape_only:
|
||||
if device != 'meta':
|
||||
dst = ctypes.c_void_p(dst_tensor.data.data_ptr())
|
||||
hist = (ctypes.c_int64 * 16)()
|
||||
ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
|
||||
return dst_tensor
|
||||
|
||||
|
|
@ -98,14 +98,16 @@ def ggml_int4_convert_fp32(tensor: torch.Tensor, weight_shape: tuple, k: int):
|
|||
return dst_tensor
|
||||
|
||||
|
||||
class ParamsQuant(torch.nn.Parameter):
|
||||
# Rename to FP4Params to trigger initializing
|
||||
# the params layer with all parameters on the CPU
|
||||
# https://github.com/huggingface/accelerate/blob/main/src/accelerate/utils/modeling.py#L333
|
||||
class FP4Params(torch.nn.Parameter):
|
||||
def __new__(cls,
|
||||
data=None,
|
||||
requires_grad=True,
|
||||
requires_grad=False,
|
||||
old_data=None,
|
||||
quantized=False,
|
||||
_shape=None,
|
||||
convert_shape_only=False,
|
||||
qtype=None):
|
||||
if data is None:
|
||||
data = torch.empty(0)
|
||||
|
|
@ -114,16 +116,14 @@ class ParamsQuant(torch.nn.Parameter):
|
|||
self.data = data
|
||||
self.quantized = quantized
|
||||
self._shape = _shape
|
||||
self.convert_shape_only = convert_shape_only
|
||||
self.qtype = qtype
|
||||
return self
|
||||
|
||||
def quantize(self, device):
|
||||
def quantize(self, device=None):
|
||||
if not self.quantized:
|
||||
w = self.data.contiguous().float()
|
||||
# self.old_data = self.data
|
||||
w_quantized = ggml_convert_quant(w, self.qtype,
|
||||
convert_shape_only=self.convert_shape_only)
|
||||
device=device)
|
||||
self.data = w_quantized
|
||||
self.quantized = True
|
||||
self._shape = w.shape
|
||||
|
|
@ -147,28 +147,29 @@ class ParamsQuant(torch.nn.Parameter):
|
|||
|
||||
def to(self, *args, **kwargs):
|
||||
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
|
||||
|
||||
if (device is not None and device.type == "cpu" and self.data.device.type == "cpu"):
|
||||
return self.quantize(device)
|
||||
return self.quantize(device.type)
|
||||
elif device is not None and device.type == "meta" and self.data.device.type == "meta":
|
||||
return self.quantize(device.type)
|
||||
elif (device is not None and device.type == "xpu" and self.data.device.type == "cpu"):
|
||||
# enter xpu logic, compile linear_int4 extension at first time
|
||||
q_tensor = self.quantize(device) # tensor is cpu now
|
||||
new_param = ParamsQuant(super().to(device=device,
|
||||
dtype=dtype,
|
||||
non_blocking=non_blocking),
|
||||
requires_grad=self.requires_grad,
|
||||
quantized=self.quantized,
|
||||
_shape=self._shape,
|
||||
qtype=self.qtype)
|
||||
new_param = FP4Params(super().to(device=device,
|
||||
dtype=dtype,
|
||||
non_blocking=non_blocking),
|
||||
requires_grad=self.requires_grad,
|
||||
quantized=self.quantized,
|
||||
_shape=self._shape,
|
||||
qtype=self.qtype)
|
||||
return new_param
|
||||
else:
|
||||
new_param = ParamsQuant(super().to(device=device,
|
||||
dtype=dtype,
|
||||
non_blocking=non_blocking),
|
||||
requires_grad=self.requires_grad,
|
||||
quantized=self.quantized,
|
||||
_shape=self._shape,
|
||||
qtype=self.qtype)
|
||||
new_param = FP4Params(super().to(device=device,
|
||||
dtype=dtype,
|
||||
non_blocking=non_blocking),
|
||||
requires_grad=self.requires_grad,
|
||||
quantized=self.quantized,
|
||||
_shape=self._shape,
|
||||
qtype=self.qtype)
|
||||
return new_param
|
||||
|
||||
|
||||
|
|
@ -213,9 +214,10 @@ def ggml_matmul_src1_x_src0_t(src0: torch.Tensor,
|
|||
class LinearQuant(nn.Linear):
|
||||
def __init__(self, input_features, output_features, qtype, bias=True):
|
||||
super().__init__(input_features, output_features, bias)
|
||||
self.weight = ParamsQuant(self.weight.data, requires_grad=False,
|
||||
old_data=self.weight.data,
|
||||
quantized=False, _shape=None, qtype=qtype)
|
||||
self.weight = FP4Params(self.weight.data,
|
||||
requires_grad=False,
|
||||
old_data=self.weight.data,
|
||||
quantized=False, _shape=None, qtype=qtype)
|
||||
self.in_len = input_features
|
||||
self.out_len = output_features
|
||||
self.weight_shape = (self.out_len, self.in_len)
|
||||
|
|
@ -223,7 +225,6 @@ class LinearQuant(nn.Linear):
|
|||
self.qtype = qtype
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
||||
if self.bias is not None and self.bias.dtype != x.dtype:
|
||||
self.bias.data = self.bias.data.to(x.dtype)
|
||||
|
||||
|
|
|
|||
|
|
@ -14,18 +14,14 @@
|
|||
# limitations under the License.
|
||||
#
|
||||
|
||||
import gc
|
||||
import transformers
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from .utils import extract_local_archive_file, \
|
||||
load_state_dict, \
|
||||
load, \
|
||||
get_local_shard_files, \
|
||||
fix_key
|
||||
get_local_shard_files
|
||||
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
||||
from bigdl.llm.utils.common import invalidInputError, MuteHFLogger
|
||||
import sys
|
||||
import importlib
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
import torch
|
||||
|
||||
|
||||
def save_low_bit(self, *args, **kwargs):
|
||||
|
|
@ -33,6 +29,15 @@ def save_low_bit(self, *args, **kwargs):
|
|||
f"Detected this model is not a low-bit model, please use from_pretrained's"
|
||||
f" load_in_4bit or load_in_low_bit parameter to load a 4-bit model first.")
|
||||
self.save_pretrained(*args, **kwargs)
|
||||
import json
|
||||
import os
|
||||
# We conveniently save all the keys of the model to have them on hand,
|
||||
# so that when using 'low_cpumem load',
|
||||
# it's not necessary to load the entire model to extract its keys
|
||||
# and we can avoid gc not triggered potentially.
|
||||
load_keys = {"all_checkpoint_keys": list(self.state_dict().keys())}
|
||||
with open(os.path.join(args[0], "load_keys.json"), "w") as json_file:
|
||||
json.dump(load_keys, json_file)
|
||||
|
||||
|
||||
class _BaseAutoModelClass:
|
||||
|
|
@ -106,11 +111,44 @@ class _BaseAutoModelClass:
|
|||
|
||||
@classmethod
|
||||
def load_low_bit(cls,
|
||||
*args,
|
||||
pretrained_model_name_or_path,
|
||||
*model_args,
|
||||
**kwargs):
|
||||
# Read bigdl_transformers_low_bit from config.json
|
||||
pretrained_model_name_or_path = kwargs.get("pretrained_model_name_or_path", None) \
|
||||
if len(args) == 0 else args[0]
|
||||
from transformers.modeling_utils import no_init_weights, get_state_dict_dtype
|
||||
from transformers.dynamic_module_utils import resolve_trust_remote_code, \
|
||||
get_class_from_dynamic_module
|
||||
from transformers.models.auto.configuration_auto import AutoConfig
|
||||
from transformers.utils.generic import ContextManagers
|
||||
from transformers.generation.configuration_utils import GenerationConfig
|
||||
from transformers.models.auto.auto_factory import _get_model_class
|
||||
from accelerate.big_modeling import init_empty_weights
|
||||
from .convert import ggml_convert_quant
|
||||
import copy
|
||||
import os
|
||||
|
||||
# Autofactory
|
||||
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
||||
kwargs_orig = copy.deepcopy(kwargs)
|
||||
|
||||
config, kwargs = AutoConfig.from_pretrained(
|
||||
pretrained_model_name_or_path,
|
||||
return_unused_kwargs=True,
|
||||
trust_remote_code=trust_remote_code,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# if torch_dtype=auto was passed here, ensure to pass it on
|
||||
if kwargs_orig.get("torch_dtype", None) == "auto":
|
||||
kwargs["torch_dtype"] = "auto"
|
||||
|
||||
# Maybe needed when extract_local_archive_file
|
||||
subfolder = kwargs.get("subfolder", "")
|
||||
variant = kwargs.get("variant", None)
|
||||
offload_folder = kwargs.pop("offload_folder", None)
|
||||
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
||||
torch_dtype = kwargs.pop("torch_dtype", "auto")
|
||||
sharded_metadata = None
|
||||
|
||||
config_dict, _ = PretrainedConfig.get_config_dict(pretrained_model_name_or_path)
|
||||
bigdl_transformers_low_bit = config_dict.pop("bigdl_transformers_low_bit", False)
|
||||
|
||||
|
|
@ -123,89 +161,130 @@ class _BaseAutoModelClass:
|
|||
f"Unknown bigdl_transformers_low_bit value: {bigdl_transformers_low_bit},"
|
||||
f" expected: sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.")
|
||||
|
||||
# Speed up when loading model
|
||||
kwargs["low_cpu_mem_usage"] = True
|
||||
|
||||
# set default torch_dtype='auto'
|
||||
kwargs["torch_dtype"] = kwargs.get("torch_dtype", 'auto')
|
||||
|
||||
# set default optimize_model=True
|
||||
optimize_model = kwargs.pop("optimize_model", True)
|
||||
|
||||
qtype = ggml_tensor_qtype[bigdl_transformers_low_bit]
|
||||
# Note that the int4 linear layers cannot currently
|
||||
# be recorded in huggingface Pretrained Model or AutoConfig,
|
||||
# and huggingface transformers cls.HF_Model.from_pretrained
|
||||
# could only restore the model in the original format,
|
||||
# which is not quantized. we can Initialize original model first,
|
||||
# convert the model to quantized int4 format later, and then load the quantized model.
|
||||
|
||||
# Avoid KeyError
|
||||
kwargs["ignore_mismatched_sizes"] = True
|
||||
has_remote_code = hasattr(config, "auto_map") and cls.HF_Model.__name__ in config.auto_map
|
||||
has_local_code = type(config) in cls.HF_Model._model_mapping.keys()
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
|
||||
)
|
||||
if has_remote_code and trust_remote_code:
|
||||
class_ref = config.auto_map[cls.HF_Model.__name__]
|
||||
model_class = get_class_from_dynamic_module(
|
||||
class_ref, pretrained_model_name_or_path, **kwargs
|
||||
)
|
||||
if os.path.isdir(pretrained_model_name_or_path):
|
||||
model_class.register_for_auto_class(cls.HF_Model.__name__)
|
||||
else:
|
||||
cls.HF_Model.register(config.__class__, model_class, exist_ok=True)
|
||||
elif type(config) in cls.HF_Model._model_mapping.keys():
|
||||
model_class = _get_model_class(config, cls.HF_Model._model_mapping)
|
||||
|
||||
# Maybe needed when extract_local_archive_file
|
||||
subfolder = kwargs.get("subfolder", "")
|
||||
variant = kwargs.get("variant", None)
|
||||
|
||||
from .convert import ggml_convert_quant
|
||||
|
||||
with MuteHFLogger(logger=transformers.modeling_utils.logger):
|
||||
model = cls.HF_Model.from_pretrained(*args, **kwargs)
|
||||
|
||||
# add save_low_bit to pretrained model dynamically
|
||||
import types
|
||||
model.save_low_bit = types.MethodType(save_low_bit, model)
|
||||
|
||||
# We forcefully modify the model's definition
|
||||
# and the tensor shape of int4 weights without quantization.
|
||||
model = ggml_convert_quant(model, qtype, optimize_model, convert_shape_only=True)
|
||||
# Load the quantized model at last.
|
||||
resolved_archive_file, is_sharded = extract_local_archive_file(
|
||||
pretrained_model_name_or_path,
|
||||
subfolder,
|
||||
variant)
|
||||
|
||||
if is_sharded:
|
||||
resolved_archive_file, sharded_metadata = \
|
||||
get_local_shard_files(pretrained_model_name_or_path,
|
||||
resolved_archive_file,
|
||||
subfolder=subfolder)
|
||||
start_prefix = ""
|
||||
prefix = model.base_model_prefix
|
||||
loaded_keys = [fix_key(key) for key in sharded_metadata["all_checkpoint_keys"]]
|
||||
if len(prefix) > 0:
|
||||
has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
|
||||
else:
|
||||
has_prefix_module = False
|
||||
|
||||
model_cls = type(model)
|
||||
if len(model_cls.base_model_prefix) > 0 and \
|
||||
not hasattr(model, model_cls.base_model_prefix) and \
|
||||
has_prefix_module:
|
||||
start_prefix = model_cls.base_model_prefix + "."
|
||||
from transformers.modeling_utils import _load_state_dict_into_model
|
||||
error_msgs = []
|
||||
for shard_file in resolved_archive_file:
|
||||
state_dict = load_state_dict(shard_file)
|
||||
error_msgs += _load_state_dict_into_model(model, state_dict, start_prefix)
|
||||
# force memory release
|
||||
del state_dict
|
||||
gc.collect()
|
||||
# set dtype to instantiate the model under:
|
||||
# 1. If torch_dtype is not None, we use that dtype
|
||||
# 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict,
|
||||
# by checking its first weights entry that is of a floating type
|
||||
# - we assume all floating dtype weights are of the same dtype
|
||||
# we also may have config.torch_dtype available, but we won't rely on it till v5
|
||||
dtype_orig = None
|
||||
|
||||
if len(error_msgs) > 0:
|
||||
error_msg = "\n\t".join(error_msgs)
|
||||
if "size mismatch" in error_msg:
|
||||
error_msg += (
|
||||
"\n\tYou may consider adding `ignore_mismatched_sizes=True`"
|
||||
" in the model `from_pretrained` method."
|
||||
)
|
||||
invalidInputError(False, "Error(s) in loading state_dict"
|
||||
f"for {model.__class__.__name__}:\n\t{error_msg}")
|
||||
if torch_dtype is not None:
|
||||
if isinstance(torch_dtype, str):
|
||||
if torch_dtype == "auto":
|
||||
if hasattr(config, "torch_dtype") and config.torch_dtype is not None:
|
||||
torch_dtype = config.torch_dtype
|
||||
|
||||
else:
|
||||
if is_sharded and "dtype" in sharded_metadata:
|
||||
torch_dtype = sharded_metadata["dtype"]
|
||||
else:
|
||||
one_state_dict = load_state_dict(resolved_archive_file[0])
|
||||
torch_dtype = get_state_dict_dtype(one_state_dict)
|
||||
del one_state_dict # free CPU memory
|
||||
else:
|
||||
invalidInputError(False,
|
||||
f'`torch_dtype` can be either `torch.dtype` or `"auto"`,'
|
||||
'but received {torch_dtype}')
|
||||
dtype_orig = model_class._set_default_torch_dtype(torch_dtype)
|
||||
|
||||
# Pretrained Model
|
||||
_fast_init = kwargs.pop("_fast_init", True)
|
||||
init_contexts = [no_init_weights(_enable=_fast_init)]
|
||||
init_contexts.append(init_empty_weights())
|
||||
|
||||
with ContextManagers(init_contexts):
|
||||
model = model_class(config, *model_args, **kwargs)
|
||||
|
||||
model = ggml_convert_quant(model, qtype, optimize_model, device="meta")
|
||||
|
||||
if is_sharded:
|
||||
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
|
||||
else:
|
||||
state_dict = load_state_dict(resolved_archive_file)
|
||||
load(model, state_dict)
|
||||
del state_dict
|
||||
import os
|
||||
import json
|
||||
with open(os.path.join(pretrained_model_name_or_path,
|
||||
"load_keys.json"), "r") as json_file:
|
||||
loaded_data = json.load(json_file)
|
||||
loaded_state_dict_keys = loaded_data["all_checkpoint_keys"]
|
||||
|
||||
# restore default dtype
|
||||
if dtype_orig is not None:
|
||||
torch.set_default_dtype(dtype_orig)
|
||||
|
||||
(
|
||||
model,
|
||||
missing_keys,
|
||||
unexpected_keys,
|
||||
mismatched_keys,
|
||||
offload_index,
|
||||
error_msgs,
|
||||
) = model_class._load_pretrained_model(
|
||||
model,
|
||||
None,
|
||||
loaded_state_dict_keys, # XXX: rename?
|
||||
resolved_archive_file,
|
||||
pretrained_model_name_or_path,
|
||||
sharded_metadata=sharded_metadata,
|
||||
_fast_init=_fast_init,
|
||||
low_cpu_mem_usage=True,
|
||||
offload_folder=offload_folder,
|
||||
offload_state_dict=offload_state_dict,
|
||||
dtype=torch_dtype,
|
||||
keep_in_fp32_modules=[],
|
||||
)
|
||||
|
||||
# make sure token embedding weights are still tied if needed
|
||||
model.tie_weights()
|
||||
|
||||
# Set model in evaluation mode to deactivate DropOut modules by default
|
||||
model.eval()
|
||||
|
||||
# If it is a model with generation capabilities, attempt to load the generation config
|
||||
if model.can_generate():
|
||||
try:
|
||||
model.generation_config = GenerationConfig.from_pretrained(
|
||||
pretrained_model_name_or_path,
|
||||
subfolder=subfolder,
|
||||
**kwargs,
|
||||
)
|
||||
except (OSError, TypeError):
|
||||
pass
|
||||
for param in model.parameters():
|
||||
param.requires_grad_(False)
|
||||
return model
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in a new issue