add qwen2 npu support (#11504)
This commit is contained in:
parent
932ef78131
commit
bb0a84044b
2 changed files with 327 additions and 5 deletions
|
|
@ -71,15 +71,32 @@ def convert_forward(m, target_m, new_forward):
|
||||||
def optimize_llm(model: torch.nn.Module):
|
def optimize_llm(model: torch.nn.Module):
|
||||||
if model.config.model_type == "llama":
|
if model.config.model_type == "llama":
|
||||||
from ipex_llm.transformers.npu_models.llama import merge_qkv
|
from ipex_llm.transformers.npu_models.llama import merge_qkv
|
||||||
model.apply(merge_qkv)
|
|
||||||
from ipex_llm.transformers.npu_models.llama import merge_mlp
|
from ipex_llm.transformers.npu_models.llama import merge_mlp
|
||||||
|
model.apply(merge_qkv)
|
||||||
model.apply(merge_mlp)
|
model.apply(merge_mlp)
|
||||||
|
|
||||||
from ipex_llm.transformers.npu_models.llama import llama_model_forward
|
from ipex_llm.transformers.npu_models.llama import llama_model_forward
|
||||||
from transformers.models.llama.modeling_llama import LlamaModel
|
|
||||||
convert_forward(model, LlamaModel, llama_model_forward)
|
|
||||||
from ipex_llm.transformers.npu_models.llama import llama_attention_forward
|
from ipex_llm.transformers.npu_models.llama import llama_attention_forward
|
||||||
from transformers.models.llama.modeling_llama import LlamaAttention
|
|
||||||
convert_forward(model, LlamaAttention, llama_attention_forward)
|
|
||||||
from ipex_llm.transformers.npu_models.llama import llama_mlp_forward
|
from ipex_llm.transformers.npu_models.llama import llama_mlp_forward
|
||||||
|
from transformers.models.llama.modeling_llama import LlamaModel
|
||||||
|
from transformers.models.llama.modeling_llama import LlamaAttention
|
||||||
from transformers.models.llama.modeling_llama import LlamaMLP
|
from transformers.models.llama.modeling_llama import LlamaMLP
|
||||||
|
convert_forward(model, LlamaModel, llama_model_forward)
|
||||||
|
convert_forward(model, LlamaAttention, llama_attention_forward)
|
||||||
convert_forward(model, LlamaMLP, llama_mlp_forward)
|
convert_forward(model, LlamaMLP, llama_mlp_forward)
|
||||||
|
|
||||||
|
elif model.config.model_type == "qwen2":
|
||||||
|
from ipex_llm.transformers.npu_models.qwen2 import merge_qkv
|
||||||
|
from ipex_llm.transformers.npu_models.qwen2 import merge_mlp
|
||||||
|
model.apply(merge_qkv)
|
||||||
|
model.apply(merge_mlp)
|
||||||
|
|
||||||
|
from ipex_llm.transformers.npu_models.qwen2 import qwen2_model_forward
|
||||||
|
from ipex_llm.transformers.npu_models.qwen2 import qwen2_attention_forward
|
||||||
|
from ipex_llm.transformers.npu_models.qwen2 import qwen2_mlp_forward
|
||||||
|
from transformers.models.qwen2.modeling_qwen2 import Qwen2Model
|
||||||
|
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention
|
||||||
|
from transformers.models.qwen2.modeling_qwen2 import Qwen2MLP
|
||||||
|
convert_forward(model, Qwen2Model, qwen2_model_forward)
|
||||||
|
convert_forward(model, Qwen2Attention, qwen2_attention_forward)
|
||||||
|
convert_forward(model, Qwen2MLP, qwen2_mlp_forward)
|
||||||
|
|
|
||||||
305
python/llm/src/ipex_llm/transformers/npu_models/qwen2.py
Normal file
305
python/llm/src/ipex_llm/transformers/npu_models/qwen2.py
Normal file
|
|
@ -0,0 +1,305 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
# Some parts of this file is adapted from
|
||||||
|
# https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/qwen2/modeling_qwen2.py
|
||||||
|
# which is licensed under Apache License 2.0:
|
||||||
|
#
|
||||||
|
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||||
|
# and OPT implementations in this library. It has been modified from its
|
||||||
|
# original forms to accommodate minor architectural differences compared
|
||||||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import math
|
||||||
|
from typing import Optional, Tuple, Union, List
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from ipex_llm.transformers.npu_models.common import merge_linear
|
||||||
|
from ipex_llm.transformers.kv import DynamicNormalCache
|
||||||
|
from ipex_llm.utils.common import invalidInputError
|
||||||
|
|
||||||
|
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2MLP
|
||||||
|
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb, repeat_kv
|
||||||
|
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask_for_sdpa
|
||||||
|
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask
|
||||||
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||||
|
from transformers.cache_utils import Cache
|
||||||
|
|
||||||
|
|
||||||
|
def merge_qkv(module: torch.nn.Module):
|
||||||
|
if isinstance(module, Qwen2Attention):
|
||||||
|
qkv_proj = merge_linear([
|
||||||
|
module.q_proj,
|
||||||
|
module.k_proj,
|
||||||
|
module.v_proj
|
||||||
|
])
|
||||||
|
module.qkv_proj = qkv_proj
|
||||||
|
del module.q_proj, module.k_proj, module.v_proj
|
||||||
|
|
||||||
|
|
||||||
|
def merge_mlp(module: torch.nn.Module):
|
||||||
|
if isinstance(module, Qwen2MLP):
|
||||||
|
gate_up_proj = merge_linear([
|
||||||
|
module.gate_proj,
|
||||||
|
module.up_proj,
|
||||||
|
])
|
||||||
|
module.gate_up_proj = gate_up_proj
|
||||||
|
del module.gate_proj, module.up_proj
|
||||||
|
|
||||||
|
|
||||||
|
def qwen2_model_forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
):
|
||||||
|
output_attentions = output_attentions if output_attentions is not None else \
|
||||||
|
self.config.output_attentions
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None else
|
||||||
|
self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
# retrieve input_ids and inputs_embeds
|
||||||
|
if input_ids is not None and inputs_embeds is not None:
|
||||||
|
invalidInputError(False,
|
||||||
|
"You cannot specify both decoder_input_ids and "
|
||||||
|
"decoder_inputs_embeds at the same time")
|
||||||
|
elif input_ids is not None:
|
||||||
|
batch_size, seq_length = input_ids.shape
|
||||||
|
elif inputs_embeds is not None:
|
||||||
|
batch_size, seq_length, _ = inputs_embeds.shape
|
||||||
|
else:
|
||||||
|
invalidInputError(False,
|
||||||
|
"You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training:
|
||||||
|
if use_cache:
|
||||||
|
use_cache = False
|
||||||
|
|
||||||
|
past_key_values_length = 0
|
||||||
|
|
||||||
|
# ipex-llm changes start
|
||||||
|
if use_cache and not isinstance(past_key_values, DynamicNormalCache):
|
||||||
|
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
||||||
|
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
||||||
|
# ipex-llm changes end
|
||||||
|
|
||||||
|
if position_ids is None:
|
||||||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||||
|
position_ids = torch.arange(
|
||||||
|
past_key_values_length, seq_length + past_key_values_length,
|
||||||
|
dtype=torch.long, device=device
|
||||||
|
)
|
||||||
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||||
|
else:
|
||||||
|
position_ids = position_ids.view(-1, seq_length).long()
|
||||||
|
|
||||||
|
if inputs_embeds is None:
|
||||||
|
inputs_embeds = self.embed_tokens(input_ids)
|
||||||
|
|
||||||
|
flash_attn_2 = self._attn_implementation == "flash_attention_2"
|
||||||
|
if attention_mask is not None and flash_attn_2 and use_cache:
|
||||||
|
|
||||||
|
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
||||||
|
if is_padding_right:
|
||||||
|
invalidInputError(
|
||||||
|
False,
|
||||||
|
"You are attempting to perform batched generation with padding_side='right'"
|
||||||
|
" this may lead to unexpected behaviour for Flash Attention version of Qwen2."
|
||||||
|
" Make sure to call `tokenizer.padding_side = 'left'` before tokenizing "
|
||||||
|
"the input. "
|
||||||
|
)
|
||||||
|
|
||||||
|
if self._attn_implementation == "flash_attention_2":
|
||||||
|
# 2d mask is passed through the layers
|
||||||
|
attention_mask = attention_mask if (attention_mask is not None and
|
||||||
|
0 in attention_mask) else None
|
||||||
|
elif self._attn_implementation == "sdpa" and not output_attentions:
|
||||||
|
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
||||||
|
# the manual implementation that requires a 4D causal mask in all cases.
|
||||||
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
||||||
|
attention_mask,
|
||||||
|
(batch_size, seq_length),
|
||||||
|
inputs_embeds,
|
||||||
|
past_key_values_length,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# 4d mask is passed through the layers
|
||||||
|
attention_mask = _prepare_4d_causal_attention_mask(
|
||||||
|
attention_mask,
|
||||||
|
(batch_size, seq_length),
|
||||||
|
inputs_embeds,
|
||||||
|
past_key_values_length,
|
||||||
|
sliding_window=self.config.sliding_window,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
|
||||||
|
# decoder layers
|
||||||
|
all_hidden_states = () if output_hidden_states else None
|
||||||
|
all_self_attns = () if output_attentions else None
|
||||||
|
next_decoder_cache = None
|
||||||
|
|
||||||
|
for decoder_layer in self.layers:
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states += (hidden_states,)
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training:
|
||||||
|
layer_outputs = self._gradient_checkpointing_func(
|
||||||
|
decoder_layer.__call__,
|
||||||
|
hidden_states,
|
||||||
|
attention_mask,
|
||||||
|
position_ids,
|
||||||
|
past_key_values,
|
||||||
|
output_attentions,
|
||||||
|
use_cache,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
layer_outputs = decoder_layer(
|
||||||
|
hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_value=past_key_values,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
use_cache=use_cache,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = layer_outputs[0]
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
all_self_attns += (layer_outputs[1],)
|
||||||
|
|
||||||
|
hidden_states = self.norm(hidden_states)
|
||||||
|
|
||||||
|
# add hidden states from the last decoder layer
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states += (hidden_states,)
|
||||||
|
|
||||||
|
# ipex-llm changes start
|
||||||
|
next_cache = next_decoder_cache
|
||||||
|
# ipex-llm changes end
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return tuple(v for v in [hidden_states, next_cache,
|
||||||
|
all_hidden_states, all_self_attns] if v is not None)
|
||||||
|
return BaseModelOutputWithPast(
|
||||||
|
last_hidden_state=hidden_states,
|
||||||
|
past_key_values=next_cache,
|
||||||
|
hidden_states=all_hidden_states,
|
||||||
|
attentions=all_self_attns,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def qwen2_attention_forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_value: Optional[Cache] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
**kwargs,
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||||
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
|
||||||
|
qkv = self.qkv_proj(hidden_states)
|
||||||
|
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
||||||
|
qkv = qkv.transpose(1, 2)
|
||||||
|
query_states, key_states, value_states = qkv.split([self.num_heads,
|
||||||
|
self.num_key_value_heads,
|
||||||
|
self.num_key_value_heads], dim=1)
|
||||||
|
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
if past_key_value is not None:
|
||||||
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||||
|
|
||||||
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||||
|
cos, sin, position_ids)
|
||||||
|
|
||||||
|
if past_key_value is not None:
|
||||||
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||||
|
self.layer_idx, None)
|
||||||
|
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
|
attn_weights = None
|
||||||
|
if query_states.size(2) == key_states.size(2):
|
||||||
|
# first token
|
||||||
|
from intel_npu_acceleration_library.functional import scaled_dot_product_attention
|
||||||
|
attn_output = scaled_dot_product_attention(
|
||||||
|
query_states,
|
||||||
|
key_states,
|
||||||
|
value_states,
|
||||||
|
attn_mask=attention_mask,
|
||||||
|
is_causal=q_len > 1 and bsz == 1,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
attn_weights = torch.matmul(query_states,
|
||||||
|
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||||
|
if attention_mask is not None:
|
||||||
|
attn_weights = attn_weights + attention_mask
|
||||||
|
# upcast attention to fp32
|
||||||
|
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
|
||||||
|
dtype=torch.float32).to(query_states.dtype)
|
||||||
|
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
||||||
|
training=self.training)
|
||||||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
||||||
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
if not output_attentions:
|
||||||
|
attn_weights = None
|
||||||
|
return attn_output, attn_weights, past_key_value
|
||||||
|
|
||||||
|
|
||||||
|
def qwen2_mlp_forward(self, x):
|
||||||
|
gate_up_proj = self.gate_up_proj(x)
|
||||||
|
gate_proj, up_proj = gate_up_proj.chunk(2, dim=-1)
|
||||||
|
down_proj = self.down_proj(self.act_fn(gate_proj) * up_proj)
|
||||||
|
return down_proj
|
||||||
Loading…
Reference in a new issue