add qwen2 npu support (#11504)
This commit is contained in:
		
							parent
							
								
									932ef78131
								
							
						
					
					
						commit
						bb0a84044b
					
				
					 2 changed files with 327 additions and 5 deletions
				
			
		| 
						 | 
					@ -71,15 +71,32 @@ def convert_forward(m, target_m, new_forward):
 | 
				
			||||||
def optimize_llm(model: torch.nn.Module):
 | 
					def optimize_llm(model: torch.nn.Module):
 | 
				
			||||||
    if model.config.model_type == "llama":
 | 
					    if model.config.model_type == "llama":
 | 
				
			||||||
        from ipex_llm.transformers.npu_models.llama import merge_qkv
 | 
					        from ipex_llm.transformers.npu_models.llama import merge_qkv
 | 
				
			||||||
        model.apply(merge_qkv)
 | 
					 | 
				
			||||||
        from ipex_llm.transformers.npu_models.llama import merge_mlp
 | 
					        from ipex_llm.transformers.npu_models.llama import merge_mlp
 | 
				
			||||||
 | 
					        model.apply(merge_qkv)
 | 
				
			||||||
        model.apply(merge_mlp)
 | 
					        model.apply(merge_mlp)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        from ipex_llm.transformers.npu_models.llama import llama_model_forward
 | 
					        from ipex_llm.transformers.npu_models.llama import llama_model_forward
 | 
				
			||||||
        from transformers.models.llama.modeling_llama import LlamaModel
 | 
					 | 
				
			||||||
        convert_forward(model, LlamaModel, llama_model_forward)
 | 
					 | 
				
			||||||
        from ipex_llm.transformers.npu_models.llama import llama_attention_forward
 | 
					        from ipex_llm.transformers.npu_models.llama import llama_attention_forward
 | 
				
			||||||
        from transformers.models.llama.modeling_llama import LlamaAttention
 | 
					 | 
				
			||||||
        convert_forward(model, LlamaAttention, llama_attention_forward)
 | 
					 | 
				
			||||||
        from ipex_llm.transformers.npu_models.llama import llama_mlp_forward
 | 
					        from ipex_llm.transformers.npu_models.llama import llama_mlp_forward
 | 
				
			||||||
 | 
					        from transformers.models.llama.modeling_llama import LlamaModel
 | 
				
			||||||
 | 
					        from transformers.models.llama.modeling_llama import LlamaAttention
 | 
				
			||||||
        from transformers.models.llama.modeling_llama import LlamaMLP
 | 
					        from transformers.models.llama.modeling_llama import LlamaMLP
 | 
				
			||||||
 | 
					        convert_forward(model, LlamaModel, llama_model_forward)
 | 
				
			||||||
 | 
					        convert_forward(model, LlamaAttention, llama_attention_forward)
 | 
				
			||||||
        convert_forward(model, LlamaMLP, llama_mlp_forward)
 | 
					        convert_forward(model, LlamaMLP, llama_mlp_forward)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    elif model.config.model_type == "qwen2":
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.npu_models.qwen2 import merge_qkv
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.npu_models.qwen2 import merge_mlp
 | 
				
			||||||
 | 
					        model.apply(merge_qkv)
 | 
				
			||||||
 | 
					        model.apply(merge_mlp)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.npu_models.qwen2 import qwen2_model_forward
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.npu_models.qwen2 import qwen2_attention_forward
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.npu_models.qwen2 import qwen2_mlp_forward
 | 
				
			||||||
 | 
					        from transformers.models.qwen2.modeling_qwen2 import Qwen2Model
 | 
				
			||||||
 | 
					        from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention
 | 
				
			||||||
 | 
					        from transformers.models.qwen2.modeling_qwen2 import Qwen2MLP
 | 
				
			||||||
 | 
					        convert_forward(model, Qwen2Model, qwen2_model_forward)
 | 
				
			||||||
 | 
					        convert_forward(model, Qwen2Attention, qwen2_attention_forward)
 | 
				
			||||||
 | 
					        convert_forward(model, Qwen2MLP, qwen2_mlp_forward)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										305
									
								
								python/llm/src/ipex_llm/transformers/npu_models/qwen2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										305
									
								
								python/llm/src/ipex_llm/transformers/npu_models/qwen2.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,305 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Some parts of this file is adapted from
 | 
				
			||||||
 | 
					# https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/qwen2/modeling_qwen2.py
 | 
				
			||||||
 | 
					# which is licensed under Apache License 2.0:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
 | 
				
			||||||
 | 
					# and OPT implementations in this library. It has been modified from its
 | 
				
			||||||
 | 
					# original forms to accommodate minor architectural differences compared
 | 
				
			||||||
 | 
					# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import math
 | 
				
			||||||
 | 
					from typing import Optional, Tuple, Union, List
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from ipex_llm.transformers.npu_models.common import merge_linear
 | 
				
			||||||
 | 
					from ipex_llm.transformers.kv import DynamicNormalCache
 | 
				
			||||||
 | 
					from ipex_llm.utils.common import invalidInputError
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2MLP
 | 
				
			||||||
 | 
					from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb, repeat_kv
 | 
				
			||||||
 | 
					from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask_for_sdpa
 | 
				
			||||||
 | 
					from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask
 | 
				
			||||||
 | 
					from transformers.modeling_outputs import BaseModelOutputWithPast
 | 
				
			||||||
 | 
					from transformers.cache_utils import Cache
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def merge_qkv(module: torch.nn.Module):
 | 
				
			||||||
 | 
					    if isinstance(module, Qwen2Attention):
 | 
				
			||||||
 | 
					        qkv_proj = merge_linear([
 | 
				
			||||||
 | 
					            module.q_proj,
 | 
				
			||||||
 | 
					            module.k_proj,
 | 
				
			||||||
 | 
					            module.v_proj
 | 
				
			||||||
 | 
					        ])
 | 
				
			||||||
 | 
					        module.qkv_proj = qkv_proj
 | 
				
			||||||
 | 
					        del module.q_proj, module.k_proj, module.v_proj
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def merge_mlp(module: torch.nn.Module):
 | 
				
			||||||
 | 
					    if isinstance(module, Qwen2MLP):
 | 
				
			||||||
 | 
					        gate_up_proj = merge_linear([
 | 
				
			||||||
 | 
					            module.gate_proj,
 | 
				
			||||||
 | 
					            module.up_proj,
 | 
				
			||||||
 | 
					        ])
 | 
				
			||||||
 | 
					        module.gate_up_proj = gate_up_proj
 | 
				
			||||||
 | 
					        del module.gate_proj, module.up_proj
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def qwen2_model_forward(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    input_ids: torch.LongTensor = None,
 | 
				
			||||||
 | 
					    attention_mask: Optional[torch.Tensor] = None,
 | 
				
			||||||
 | 
					    position_ids: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
				
			||||||
 | 
					    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
				
			||||||
 | 
					    use_cache: Optional[bool] = None,
 | 
				
			||||||
 | 
					    output_attentions: Optional[bool] = None,
 | 
				
			||||||
 | 
					    output_hidden_states: Optional[bool] = None,
 | 
				
			||||||
 | 
					    return_dict: Optional[bool] = None,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    output_attentions = output_attentions if output_attentions is not None else \
 | 
				
			||||||
 | 
					        self.config.output_attentions
 | 
				
			||||||
 | 
					    output_hidden_states = (
 | 
				
			||||||
 | 
					        output_hidden_states if output_hidden_states is not None else
 | 
				
			||||||
 | 
					        self.config.output_hidden_states
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # retrieve input_ids and inputs_embeds
 | 
				
			||||||
 | 
					    if input_ids is not None and inputs_embeds is not None:
 | 
				
			||||||
 | 
					        invalidInputError(False,
 | 
				
			||||||
 | 
					                          "You cannot specify both decoder_input_ids and "
 | 
				
			||||||
 | 
					                          "decoder_inputs_embeds at the same time")
 | 
				
			||||||
 | 
					    elif input_ids is not None:
 | 
				
			||||||
 | 
					        batch_size, seq_length = input_ids.shape
 | 
				
			||||||
 | 
					    elif inputs_embeds is not None:
 | 
				
			||||||
 | 
					        batch_size, seq_length, _ = inputs_embeds.shape
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        invalidInputError(False,
 | 
				
			||||||
 | 
					                          "You have to specify either decoder_input_ids or decoder_inputs_embeds")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if self.gradient_checkpointing and self.training:
 | 
				
			||||||
 | 
					        if use_cache:
 | 
				
			||||||
 | 
					            use_cache = False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    past_key_values_length = 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # ipex-llm changes start
 | 
				
			||||||
 | 
					    if use_cache and not isinstance(past_key_values, DynamicNormalCache):
 | 
				
			||||||
 | 
					        past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
 | 
				
			||||||
 | 
					        past_key_values_length = past_key_values.get_usable_length(seq_length)
 | 
				
			||||||
 | 
					    # ipex-llm changes end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if position_ids is None:
 | 
				
			||||||
 | 
					        device = input_ids.device if input_ids is not None else inputs_embeds.device
 | 
				
			||||||
 | 
					        position_ids = torch.arange(
 | 
				
			||||||
 | 
					            past_key_values_length, seq_length + past_key_values_length,
 | 
				
			||||||
 | 
					            dtype=torch.long, device=device
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        position_ids = position_ids.view(-1, seq_length).long()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if inputs_embeds is None:
 | 
				
			||||||
 | 
					        inputs_embeds = self.embed_tokens(input_ids)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    flash_attn_2 = self._attn_implementation == "flash_attention_2"
 | 
				
			||||||
 | 
					    if attention_mask is not None and flash_attn_2 and use_cache:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        is_padding_right = attention_mask[:, -1].sum().item() != batch_size
 | 
				
			||||||
 | 
					        if is_padding_right:
 | 
				
			||||||
 | 
					            invalidInputError(
 | 
				
			||||||
 | 
					                False,
 | 
				
			||||||
 | 
					                "You are attempting to perform batched generation with padding_side='right'"
 | 
				
			||||||
 | 
					                " this may lead to unexpected behaviour for Flash Attention version of Qwen2."
 | 
				
			||||||
 | 
					                " Make sure to  call `tokenizer.padding_side  = 'left'` before tokenizing "
 | 
				
			||||||
 | 
					                "the input. "
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if self._attn_implementation == "flash_attention_2":
 | 
				
			||||||
 | 
					        # 2d mask is passed through the layers
 | 
				
			||||||
 | 
					        attention_mask = attention_mask if (attention_mask is not None and
 | 
				
			||||||
 | 
					                                            0 in attention_mask) else None
 | 
				
			||||||
 | 
					    elif self._attn_implementation == "sdpa" and not output_attentions:
 | 
				
			||||||
 | 
					        # output_attentions=True can not be supported when using SDPA, and we fall back on
 | 
				
			||||||
 | 
					        # the manual implementation that requires a 4D causal mask in all cases.
 | 
				
			||||||
 | 
					        attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
 | 
				
			||||||
 | 
					            attention_mask,
 | 
				
			||||||
 | 
					            (batch_size, seq_length),
 | 
				
			||||||
 | 
					            inputs_embeds,
 | 
				
			||||||
 | 
					            past_key_values_length,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        # 4d mask is passed through the layers
 | 
				
			||||||
 | 
					        attention_mask = _prepare_4d_causal_attention_mask(
 | 
				
			||||||
 | 
					            attention_mask,
 | 
				
			||||||
 | 
					            (batch_size, seq_length),
 | 
				
			||||||
 | 
					            inputs_embeds,
 | 
				
			||||||
 | 
					            past_key_values_length,
 | 
				
			||||||
 | 
					            sliding_window=self.config.sliding_window,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    hidden_states = inputs_embeds
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # decoder layers
 | 
				
			||||||
 | 
					    all_hidden_states = () if output_hidden_states else None
 | 
				
			||||||
 | 
					    all_self_attns = () if output_attentions else None
 | 
				
			||||||
 | 
					    next_decoder_cache = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for decoder_layer in self.layers:
 | 
				
			||||||
 | 
					        if output_hidden_states:
 | 
				
			||||||
 | 
					            all_hidden_states += (hidden_states,)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if self.gradient_checkpointing and self.training:
 | 
				
			||||||
 | 
					            layer_outputs = self._gradient_checkpointing_func(
 | 
				
			||||||
 | 
					                decoder_layer.__call__,
 | 
				
			||||||
 | 
					                hidden_states,
 | 
				
			||||||
 | 
					                attention_mask,
 | 
				
			||||||
 | 
					                position_ids,
 | 
				
			||||||
 | 
					                past_key_values,
 | 
				
			||||||
 | 
					                output_attentions,
 | 
				
			||||||
 | 
					                use_cache,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            layer_outputs = decoder_layer(
 | 
				
			||||||
 | 
					                hidden_states,
 | 
				
			||||||
 | 
					                attention_mask=attention_mask,
 | 
				
			||||||
 | 
					                position_ids=position_ids,
 | 
				
			||||||
 | 
					                past_key_value=past_key_values,
 | 
				
			||||||
 | 
					                output_attentions=output_attentions,
 | 
				
			||||||
 | 
					                use_cache=use_cache,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        hidden_states = layer_outputs[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if use_cache:
 | 
				
			||||||
 | 
					            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if output_attentions:
 | 
				
			||||||
 | 
					            all_self_attns += (layer_outputs[1],)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    hidden_states = self.norm(hidden_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # add hidden states from the last decoder layer
 | 
				
			||||||
 | 
					    if output_hidden_states:
 | 
				
			||||||
 | 
					        all_hidden_states += (hidden_states,)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # ipex-llm changes start
 | 
				
			||||||
 | 
					    next_cache = next_decoder_cache
 | 
				
			||||||
 | 
					    # ipex-llm changes end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if not return_dict:
 | 
				
			||||||
 | 
					        return tuple(v for v in [hidden_states, next_cache,
 | 
				
			||||||
 | 
					                                 all_hidden_states, all_self_attns] if v is not None)
 | 
				
			||||||
 | 
					    return BaseModelOutputWithPast(
 | 
				
			||||||
 | 
					        last_hidden_state=hidden_states,
 | 
				
			||||||
 | 
					        past_key_values=next_cache,
 | 
				
			||||||
 | 
					        hidden_states=all_hidden_states,
 | 
				
			||||||
 | 
					        attentions=all_self_attns,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def qwen2_attention_forward(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
 | 
					    attention_mask: Optional[torch.Tensor] = None,
 | 
				
			||||||
 | 
					    position_ids: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					    past_key_value: Optional[Cache] = None,
 | 
				
			||||||
 | 
					    output_attentions: bool = False,
 | 
				
			||||||
 | 
					    use_cache: bool = False,
 | 
				
			||||||
 | 
					    **kwargs,
 | 
				
			||||||
 | 
					) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
				
			||||||
 | 
					    bsz, q_len, _ = hidden_states.size()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    qkv = self.qkv_proj(hidden_states)
 | 
				
			||||||
 | 
					    qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
 | 
				
			||||||
 | 
					    qkv = qkv.transpose(1, 2)
 | 
				
			||||||
 | 
					    query_states, key_states, value_states = qkv.split([self.num_heads,
 | 
				
			||||||
 | 
					                                                        self.num_key_value_heads,
 | 
				
			||||||
 | 
					                                                        self.num_key_value_heads], dim=1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    kv_seq_len = key_states.shape[-2]
 | 
				
			||||||
 | 
					    if past_key_value is not None:
 | 
				
			||||||
 | 
					        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
				
			||||||
 | 
					    query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
				
			||||||
 | 
					                                                    cos, sin, position_ids)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if past_key_value is not None:
 | 
				
			||||||
 | 
					        key_states, value_states = past_key_value.update(key_states, value_states,
 | 
				
			||||||
 | 
					                                                         self.layer_idx, None)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					    value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_weights = None
 | 
				
			||||||
 | 
					    if query_states.size(2) == key_states.size(2):
 | 
				
			||||||
 | 
					        # first token
 | 
				
			||||||
 | 
					        from intel_npu_acceleration_library.functional import scaled_dot_product_attention
 | 
				
			||||||
 | 
					        attn_output = scaled_dot_product_attention(
 | 
				
			||||||
 | 
					            query_states,
 | 
				
			||||||
 | 
					            key_states,
 | 
				
			||||||
 | 
					            value_states,
 | 
				
			||||||
 | 
					            attn_mask=attention_mask,
 | 
				
			||||||
 | 
					            is_causal=q_len > 1 and bsz == 1,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        attn_weights = torch.matmul(query_states,
 | 
				
			||||||
 | 
					                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
				
			||||||
 | 
					        if attention_mask is not None:
 | 
				
			||||||
 | 
					            attn_weights = attn_weights + attention_mask
 | 
				
			||||||
 | 
					        # upcast attention to fp32
 | 
				
			||||||
 | 
					        attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
				
			||||||
 | 
					                                                   dtype=torch.float32).to(query_states.dtype)
 | 
				
			||||||
 | 
					        attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
 | 
				
			||||||
 | 
					                                                   training=self.training)
 | 
				
			||||||
 | 
					        attn_output = torch.matmul(attn_weights, value_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
				
			||||||
 | 
					    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output = self.o_proj(attn_output)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if not output_attentions:
 | 
				
			||||||
 | 
					        attn_weights = None
 | 
				
			||||||
 | 
					    return attn_output, attn_weights, past_key_value
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def qwen2_mlp_forward(self, x):
 | 
				
			||||||
 | 
					    gate_up_proj = self.gate_up_proj(x)
 | 
				
			||||||
 | 
					    gate_proj, up_proj = gate_up_proj.chunk(2, dim=-1)
 | 
				
			||||||
 | 
					    down_proj = self.down_proj(self.act_fn(gate_proj) * up_proj)
 | 
				
			||||||
 | 
					    return down_proj
 | 
				
			||||||
		Loading…
	
		Reference in a new issue