optimize starcoder2-3b (#10625)
This commit is contained in:
		
							parent
							
								
									a10f5a1b8d
								
							
						
					
					
						commit
						ba8cc6bd68
					
				
					 3 changed files with 224 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -595,6 +595,10 @@ def _optimize_pre(model):
 | 
			
		|||
    ):
 | 
			
		||||
        from ipex_llm.transformers.models.bert import merge_qkv
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
    # for starcoder2
 | 
			
		||||
    if model.config.model_type == "starcoder2":
 | 
			
		||||
        from ipex_llm.transformers.models.starcoder2 import merge_qkv
 | 
			
		||||
        model.apply(merge_qkv)
 | 
			
		||||
    if model.config.model_type == "qwen":
 | 
			
		||||
        rope_base = model.config.rotary_emb_base
 | 
			
		||||
        from accelerate.big_modeling import init_empty_weights
 | 
			
		||||
| 
						 | 
				
			
			@ -1295,6 +1299,15 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
                     module.GPTBigCodeAttention,
 | 
			
		||||
                     "_attn",
 | 
			
		||||
                     _attn)
 | 
			
		||||
    elif model.config.model_type == "starcoder2":
 | 
			
		||||
        # starcoder2
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        from ipex_llm.transformers.models.starcoder2 import attention_forward
 | 
			
		||||
        from ipex_llm.transformers.models.starcoder2 import model_forward
 | 
			
		||||
        convert_forward(model, module.Starcoder2Attention, attention_forward)
 | 
			
		||||
        convert_forward(model, module.Starcoder2Model, model_forward)
 | 
			
		||||
 | 
			
		||||
    elif model.config.model_type == 'yuan':
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -35,7 +35,12 @@ class DynamicFp8Cache(DynamicCache):
 | 
			
		|||
        batch_size, num_heads, seq_len, head_dim = key_states.shape
 | 
			
		||||
 | 
			
		||||
        if layer_idx == 0:
 | 
			
		||||
            self.seen_tokens += seq_len
 | 
			
		||||
            if hasattr(self, "_seen_tokens"):
 | 
			
		||||
                # 4.39 uses `_seen_tokens`
 | 
			
		||||
                self._seen_tokens += seq_len
 | 
			
		||||
            else:
 | 
			
		||||
                # 4.37 uses `seen_tokens`
 | 
			
		||||
                self.seen_tokens += seq_len
 | 
			
		||||
 | 
			
		||||
        # Update the cache
 | 
			
		||||
        if len(self.key_cache) <= layer_idx:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										205
									
								
								python/llm/src/ipex_llm/transformers/models/starcoder2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										205
									
								
								python/llm/src/ipex_llm/transformers/models/starcoder2.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,205 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://github.com/huggingface/transformers/blob/v4.39.0/src/transformers/models/starcoder2/modeling_starcoder2.py
 | 
			
		||||
# which is licensed under Apache License 2.0:
 | 
			
		||||
#
 | 
			
		||||
# Copyright 2024 BigCode and the HuggingFace Inc. team. All rights reserved.
 | 
			
		||||
#
 | 
			
		||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
 | 
			
		||||
# and OPT implementations in this library. It has been modified from its
 | 
			
		||||
# original forms to accommodate minor architectural differences compared
 | 
			
		||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
import torch
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.models.utils import (
 | 
			
		||||
    use_quantize_kv_cache, restore_fp8_kv_cache,
 | 
			
		||||
    apply_rotary_pos_emb_no_cache_xpu
 | 
			
		||||
)
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicFp8Cache
 | 
			
		||||
from ipex_llm.utils.common.log4Error import invalidInputError
 | 
			
		||||
 | 
			
		||||
from typing import Optional, Tuple, List
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
from transformers.models.starcoder2.modeling_starcoder2 import repeat_kv, apply_rotary_pos_emb
 | 
			
		||||
from transformers.models.starcoder2.modeling_starcoder2 import Starcoder2Model, Starcoder2Attention
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def should_use_fuse_rope(self, hidden_states, position_ids):
 | 
			
		||||
    use_fuse_rope = (
 | 
			
		||||
        hidden_states.device.type == "xpu" and
 | 
			
		||||
        not (self.training and hidden_states.requires_grad) and
 | 
			
		||||
        position_ids is not None
 | 
			
		||||
    )
 | 
			
		||||
    return use_fuse_rope
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def merge_qkv(module: torch.nn.Module):
 | 
			
		||||
    if isinstance(module, Starcoder2Attention):
 | 
			
		||||
        new_weight = torch.cat([
 | 
			
		||||
            module.q_proj.weight.data,
 | 
			
		||||
            module.k_proj.weight.data,
 | 
			
		||||
            module.v_proj.weight.data,
 | 
			
		||||
        ], dim=0)
 | 
			
		||||
        new_bias = torch.cat([
 | 
			
		||||
            module.q_proj.bias.data,
 | 
			
		||||
            module.k_proj.bias.data,
 | 
			
		||||
            module.v_proj.bias.data,
 | 
			
		||||
        ], dim=-1)
 | 
			
		||||
 | 
			
		||||
        qkv_proj = torch.nn.Linear(0, 0, bias=True)
 | 
			
		||||
        qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False)
 | 
			
		||||
        qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False)
 | 
			
		||||
        qkv_proj.in_features = new_weight.size(1)
 | 
			
		||||
        qkv_proj.out_features = new_weight.size(0)
 | 
			
		||||
        module.qkv_proj = qkv_proj
 | 
			
		||||
 | 
			
		||||
        del module.q_proj, module.k_proj, module.v_proj
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_value: Optional[Cache] = None,
 | 
			
		||||
    output_attentions: bool = False,
 | 
			
		||||
    use_cache: bool = False,
 | 
			
		||||
    **kwargs,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    if "padding_mask" in kwargs:
 | 
			
		||||
        warnings.warn(
 | 
			
		||||
            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
 | 
			
		||||
            "Please make sure use `attention_mask` instead.`"
 | 
			
		||||
        )
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
 | 
			
		||||
    qkv = self.qkv_proj(hidden_states)
 | 
			
		||||
    qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
 | 
			
		||||
    qkv = qkv.transpose(1, 2)
 | 
			
		||||
    query_states, key_states, value_states = qkv.split([self.num_heads,
 | 
			
		||||
                                                        self.num_key_value_heads,
 | 
			
		||||
                                                        self.num_key_value_heads], dim=1)
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
			
		||||
 | 
			
		||||
    # IPEX-LLM OPT: fuse rope
 | 
			
		||||
    if should_use_fuse_rope(self, hidden_states, position_ids):
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
			
		||||
                                                                     key_states,
 | 
			
		||||
                                                                     position_ids,
 | 
			
		||||
                                                                     "mistral",
 | 
			
		||||
                                                                     self.rope_theta)
 | 
			
		||||
    else:
 | 
			
		||||
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb(
 | 
			
		||||
            query_states, key_states, cos, sin, position_ids)
 | 
			
		||||
 | 
			
		||||
    # IPEX-LLM OPT: kv cache and quantize kv cache
 | 
			
		||||
    invalidInputError(past_key_value is not None,
 | 
			
		||||
                      "`past_key_value` cannot be None")
 | 
			
		||||
    use_quantize_kv = use_quantize_kv_cache(self.o_proj, hidden_states)
 | 
			
		||||
 | 
			
		||||
    if use_quantize_kv:
 | 
			
		||||
        key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
                                                         self.layer_idx, None, new_layout=True)
 | 
			
		||||
    else:
 | 
			
		||||
        key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
                                                         self.layer_idx, None)
 | 
			
		||||
 | 
			
		||||
    if use_quantize_kv and q_len == 1:
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states, attention_mask)
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
    else:
 | 
			
		||||
        if use_quantize_kv:
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
 | 
			
		||||
        # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                   dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
 | 
			
		||||
                                                   training=self.training)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
    attn_output = torch.nn.functional.dropout(attn_output, p=self.residual_dropout,
 | 
			
		||||
                                              training=self.training)
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def model_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
):
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    if use_cache and use_quantize_kv_cache(self.layers[0].mlp.c_fc, input_ids):
 | 
			
		||||
        if not isinstance(past_key_values, DynamicFp8Cache):
 | 
			
		||||
            past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
 | 
			
		||||
    return Starcoder2Model.forward(
 | 
			
		||||
        self=self,
 | 
			
		||||
        input_ids=input_ids,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        past_key_values=past_key_values,
 | 
			
		||||
        inputs_embeds=inputs_embeds,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
        output_hidden_states=output_hidden_states,
 | 
			
		||||
        return_dict=return_dict,
 | 
			
		||||
    )
 | 
			
		||||
		Loading…
	
		Reference in a new issue