GGUF load memory optimization (#9913)

* block-wise

* convert linear for module

* revert

* Fix PEP8 checks Error
This commit is contained in:
Shaojun Liu 2024-01-16 18:54:39 +08:00 committed by GitHub
parent 8643b62521
commit b909c5c9c2
2 changed files with 197 additions and 46 deletions

View file

@ -327,6 +327,145 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
return model, has_been_replaced
def replace_with_low_bit_linear_for_module(model, qtype, module_name=None,
modules_to_not_convert=None, current_key_name=None,
convert_shape_only=False, torch_dtype="auto"):
from bigdl.llm.transformers.low_bit_linear import LowBitLinear, FP4Params, \
FP16Linear, BF16Linear
has_been_replaced = False
if "." in module_name:
splits = module_name.split(".")
parent_module = getattr(model, splits[0])
if "lm_head" not in module_name:
for split in splits[1:-2]:
new_module = getattr(parent_module, split)
parent_module = new_module
module = getattr(parent_module, splits[-2])
module_name = splits[-2]
else:
module = parent_module
parent_module = model
module_name = splits[0]
if current_key_name is None:
current_key_name = []
if modules_to_not_convert is None:
modules_to_not_convert = []
is_linear, linear_args = is_linear_module(module)
if is_linear and module_name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if (not any(key in ".".join(current_key_name) for key in modules_to_not_convert) and
module.weight.data.device.type != 'meta' and not isinstance(module, LowBitLinear)):
in_features, out_features, mp_group = linear_args
with init_empty_weights():
new_linear = None
is_gptq = is_auto_gptq_available() and isinstance(module, QuantLinearCudaOld)
is_awq = is_auto_awq_available() and isinstance(module, WQLinear_GEMM)
is_llm_awq = is_awq and module.backend == AwqBackendPackingMethod.LLMAWQ
if is_gptq or is_awq:
has_bias = module.bias is not None and module.bias.abs().sum() != 0
new_linear = LowBitLinear(
in_features,
out_features,
qtype=qtype,
bias=has_bias,
mp_group=mp_group,
)
device = module.qweight.data.device
invalidInputError(device.type != "meta",
"converting from meta device is not supported")
# Copy the weights
paramsLowBit = FP4Params(data=convert_gptq(module, awq=is_awq,
llm_awq=is_llm_awq),
requires_grad=False,
quantized=True,
_shape=(out_features, in_features),
convert_shape_only=convert_shape_only,
qtype=qtype).to(device)
new_linear._parameters['weight'] = paramsLowBit
if has_bias:
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
.to(device)
elif qtype not in [ggml_tensor_qtype["fp16"], ggml_tensor_qtype["bf16"]]:
new_linear = LowBitLinear(
in_features,
out_features,
qtype,
module.bias is not None,
mp_group=mp_group,
)
device = module.weight.data.device
# Copy the weights
paramsLowBit = FP4Params(data=module.weight.data,
requires_grad=False,
quantized=False,
_shape=None,
convert_shape_only=convert_shape_only,
qtype=qtype).to(device)
new_linear._parameters['weight'] = paramsLowBit
if module.bias is not None:
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
.to(device)
elif qtype == ggml_tensor_qtype["fp16"]:
module.to(torch.float16)
new_linear = FP16Linear(
in_features,
out_features,
module.bias is not None,
mp_group=mp_group,
)
device = module.weight.data.device
from bigdl.llm.transformers.utils import get_ipex_version
if get_ipex_version() < "2.1.10+xpu":
new_linear._parameters['weight'] = nn.Parameter(module.weight)
else:
# only from 2.1, ipex provides matmul_bias_out
# so we need to transpose weight
new_weight = module.weight.transpose(0, 1).contiguous()
new_linear._parameters['weight'] = nn.Parameter(new_weight)
new_linear.weight_type = 2
if module.bias is not None:
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
.to(device)
elif qtype == ggml_tensor_qtype["bf16"]:
module.to(torch.bfloat16)
new_linear = BF16Linear(
in_features,
out_features,
module.bias is not None,
mp_group=mp_group,
)
device = module.weight.data.device
# convert here
new_linear._parameters['weight'] = nn.Parameter(module.weight)
if module.bias is not None:
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
.to(device)
if new_linear is not None:
if not module.training:
new_linear.eval()
parent_module._modules[module_name] = new_linear
has_been_replaced = True
# Force requires grad to False to avoid unexpected errors
parent_module._modules[module_name].requires_grad_(False)
module.weight = None
if has_been_replaced:
if not (getattr(model, "quantization_method", None) == "gptq"):
if torch_dtype == "auto":
convert_bigdl_other_module(model, torch.float32)
else:
convert_bigdl_other_module(model, torch_dtype)
return model
def _optimize_pre(model):
from transformers.modeling_utils import PreTrainedModel
# All huggingface format models are inherited from `PreTrainedModel`

View file

@ -22,9 +22,12 @@ from tempfile import NamedTemporaryFile
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
from ..gguf import GGUFFileLoader
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
from bigdl.llm.transformers.convert import replace_with_low_bit_linear_for_module
def load_gguf_llama(loader: GGUFFileLoader, dtype: torch.dtype = torch.float):
def load_gguf_llama(loader: GGUFFileLoader, dtype: torch.dtype = torch.float,
low_bit='sym_int4'):
config = loader.config
llama_config = LlamaConfig(
@ -44,42 +47,40 @@ def load_gguf_llama(loader: GGUFFileLoader, dtype: torch.dtype = torch.float):
pretraining_tp=1,
)
ckpt = loader.tensors(dtype)
qtype = ggml_tensor_qtype[low_bit]
n_head = config['llama.attention.head_count']
n_head_kv = config['llama.attention.head_count_kv']
ckpt = restore_llama_weight(ckpt, n_head, n_head_kv)
state_dict = {}
state_dict['model.embed_tokens.weight'] = ckpt['token_embd.weight']
state_dict['model.norm.weight'] = ckpt['output_norm.weight']
state_dict['lm_head.weight'] = ckpt['output.weight']
for i in range(config['llama.block_count']):
state_dict[f'model.layers.{i}.self_attn.q_proj.weight'] = \
ckpt[f'blk.{i}.attn_q.weight']
state_dict[f'model.layers.{i}.self_attn.k_proj.weight'] = \
ckpt[f'blk.{i}.attn_k.weight']
state_dict[f'model.layers.{i}.self_attn.v_proj.weight'] = \
ckpt[f'blk.{i}.attn_v.weight']
state_dict[f'model.layers.{i}.self_attn.o_proj.weight'] = \
ckpt[f'blk.{i}.attn_output.weight']
state_dict[f'model.layers.{i}.mlp.gate_proj.weight'] = \
ckpt[f'blk.{i}.ffn_gate.weight']
state_dict[f'model.layers.{i}.mlp.up_proj.weight'] = \
ckpt[f'blk.{i}.ffn_up.weight']
state_dict[f'model.layers.{i}.mlp.down_proj.weight'] = \
ckpt[f'blk.{i}.ffn_down.weight']
state_dict[f'model.layers.{i}.input_layernorm.weight'] = \
ckpt[f'blk.{i}.attn_norm.weight']
state_dict[f'model.layers.{i}.post_attention_layernorm.weight'] = \
ckpt[f'blk.{i}.ffn_norm.weight']
with init_empty_weights():
model = LlamaForCausalLM(llama_config)
for name, weight in state_dict.items():
set_module_tensor_to_device(model, name, "cpu", weight, dtype=dtype)
model = model.cpu()
def process_llama(name, tensor):
nonlocal model
module_name = get_llama_module_name(name)
if 'q_proj' in module_name:
# gguf weight needs to reshape for q_proj
head, hd_size = tensor.shape[0], tensor.shape[1:]
set_module_tensor_to_device(model, module_name, "cpu",
tensor.reshape(n_head, head // n_head // 2, 2, *hd_size)
.swapaxes(1, 2)
.reshape(tensor.shape),
dtype=dtype)
elif 'k_proj' in module_name:
# gguf weight needs to reshape for k_proj
head, hd_size = tensor.shape[0], tensor.shape[1:]
set_module_tensor_to_device(model, module_name, "cpu",
tensor.reshape(n_head_kv,
head // n_head_kv // 2,
2,
*hd_size)
.swapaxes(1, 2)
.reshape(tensor.shape),
dtype=dtype)
else:
set_module_tensor_to_device(model, module_name, "cpu", tensor, dtype=dtype)
model = replace_with_low_bit_linear_for_module(model, qtype=qtype, module_name=module_name)
tensor_loader = loader.tensor_loader
tensor_loader.load_while_process(process_llama)
# see https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
from transformers.convert_slow_tokenizer import import_protobuf
@ -100,18 +101,29 @@ def load_gguf_llama(loader: GGUFFileLoader, dtype: torch.dtype = torch.float):
return model, tokenizer
def restore_llama_weight(ckpt: dict, n_head: int, n_head_kv: int):
# see https://github.com/ggerganov/llama.cpp/blob
# /3e73d31d9cc0232882ce61c64742aff3ecfec416/convert.py#L978
for name, weight in ckpt.items():
head, hd_size = weight.shape[0], weight.shape[1:]
if name.endswith("attn_q.weight"):
ckpt[name] = (weight.reshape(n_head, head // n_head // 2, 2, *hd_size)
.swapaxes(1, 2)
.reshape(weight.shape))
elif name.endswith("attn_k.weight"):
ckpt[name] = (weight.reshape(n_head_kv, head // n_head_kv // 2, 2, *hd_size)
.swapaxes(1, 2)
.reshape(weight.shape))
return ckpt
def get_llama_module_name(name):
if name == 'token_embd.weight':
return 'model.embed_tokens.weight'
if name == 'output_norm.weight':
return 'model.norm.weight'
if name == 'output.weight':
return 'lm_head.weight'
layer_id = name.split('.')[1]
if 'attn_q' in name:
return f'model.layers.{layer_id}.self_attn.q_proj.weight'
if 'attn_k' in name:
return f'model.layers.{layer_id}.self_attn.k_proj.weight'
if 'attn_v' in name:
return f'model.layers.{layer_id}.self_attn.v_proj.weight'
if 'attn_output' in name:
return f'model.layers.{layer_id}.self_attn.o_proj.weight'
if 'ffn_gate' in name:
return f'model.layers.{layer_id}.mlp.gate_proj.weight'
if 'ffn_up' in name:
return f'model.layers.{layer_id}.mlp.up_proj.weight'
if 'ffn_down' in name:
return f'model.layers.{layer_id}.mlp.down_proj.weight'
if 'attn_norm' in name:
return f'model.layers.{layer_id}.input_layernorm.weight'
if 'ffn_norm' in name:
return f'model.layers.{layer_id}.post_attention_layernorm.weight'