[LLM] Performance test (#8796)

This commit is contained in:
Song Jiaming 2023-08-25 14:31:45 +08:00 committed by GitHub
parent 9d0f6a8cce
commit b8b1b6888b
5 changed files with 191 additions and 4 deletions

View file

@ -0,0 +1,66 @@
name: LLM Performance Test
# Cancel previous runs in the PR when you push new commits
concurrency:
group: ${{ github.workflow }}-llm-performance-tests-${{ github.event.pull_request.number || github.run_id }}
cancel-in-progress: true
# Controls when the action will run.
on:
schedule:
- cron: '00 13 * * *' # GMT time, 13:00 GMT == 21:00 China
pull_request:
branches: [ main ]
paths:
- '.github/workflows/llm_performance_tests.yml'
- '.github/workflows/llm-binary-build.yml'
- '.github/actions/llm/setup-llm-env/action.yml'
- '.github/actions/llm/remove-llm-env/action.yml'
- '.github/actions/llm/download-llm-binary/action.yml'
workflow_dispatch:
workflow_call:
# A workflow run is made up of one or more jobs that can run sequentially or in parallel
jobs:
llm-cpp-build:
uses: ./.github/workflows/llm-binary-build.yml
llm-performance-test:
needs: llm-cpp-build
strategy:
fail-fast: false
matrix:
python-version: ["3.9"]
instruction: ["AVX512"]
runs-on: [ self-hosted, llm, perf ]
env:
THREAD_NUM: 24
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install --upgrade setuptools==58.0.4
python -m pip install --upgrade wheel
- name: Download llm binary
uses: ./.github/actions/llm/download-llm-binary
- name: Run LLM install (all) test
uses: ./.github/actions/llm/setup-llm-env
env:
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
- name: Run LLM Performance test
env:
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
run:
bash python/llm/dev/benchmark/run-benchmark-tests.sh
# - name: Clean up test environment
# uses: ./.github/actions/llm/remove-llm-env
# env:
# ANALYTICS_ZOO_ROOT: ${{ github.workspace }}

View file

@ -510,8 +510,9 @@ class BenchmarkWrapper:
learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
"""
def __init__(self, model):
def __init__(self, model, do_print=True):
self.model = model
self.do_print = do_print
print(self.model.__class__)
def __getattr__(self, attr):
@ -2445,9 +2446,13 @@ class BenchmarkWrapper:
if this_peer_finished and not synced_gpus:
break
print(f"=========First token cost {first_token_time:.4f}s=========")
if self.do_print:
print(f"=========First token cost {first_token_time:.4f}s=========")
if len(last_token_time) > 1:
print(f"=========Rest tokens cost average {np.mean(last_token_time):.4f}s ({len(last_token_time)} tokens in all)=========")
self.first_cost = first_token_time
self.rest_cost_mean = np.mean(last_token_time)
if self.do_print:
print(f"=========Rest tokens cost average {self.rest_cost_mean:.4f}s ({len(last_token_time)} tokens in all)=========")
if streamer is not None:
streamer.end()

View file

@ -0,0 +1,94 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# this code is copied from llama2 example test, and added performance test
import torch
import time
import argparse
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import LlamaTokenizer
import os
benchmark_util_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')
import sys
sys.path.append(benchmark_util_path)
from benchmark_util import BenchmarkWrapper
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
LLAMA2_PROMPT_FORMAT = """### HUMAN:
{prompt}
### RESPONSE:
"""
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True)
model = BenchmarkWrapper(model, do_print=False)
# Load tokenizer
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)
assert "AI is a term" in output_str, "output is not as expected, the correctness may be wrong."
llama2_baseline = os.getenv('LLAMA2_BASELINE')
if llama2_baseline is None:
print('baseline is not set, skipping baseline validation')
else:
llama2_baseline = float(llama2_baseline)
ratio = model.rest_cost_mean / llama2_baseline
assert ratio < 1.1, f"performance did not meet baseline, the cost is {(ratio - 1) * 100}% higher than the baseline"

View file

@ -0,0 +1,22 @@
# Performance tests usually use dedicated machines, see below to set env vars, e.g. model paths
# The following environment variables should be ready
# ORIGINAL_LLAMA2_PATH
# LLAMA2_BASELINE
# LLM_DIR
if [ -z "$THREAD_NUM" ]; then
THREAD_NUM=2
fi
export OMP_NUM_THREADS=$THREAD_NUM
######## LLAMA2
# transformers
if [ ! -d $ORIGINAL_LLAMA2_PATH ]; then
echo "Directory $ORIGINAL_LLAMA2_PATH not found. Downloading from FTP server..."
wget -r -nH --no-verbose --cut-dirs=1 $LLM_FTP_URL/${ORIGINAL_LLAMA2_PATH:2} -P $LLM_DIR
fi
echo ">>> Testing LLAMA2 transformers API"
taskset -c 0-$((THREAD_NUM - 1)) python python/llm/dev/benchmark/pipelines/llama2_test.py --repo-id-or-model-path $ORIGINAL_LLAMA2_PATH

View file

@ -50,7 +50,7 @@ llm_home = os.path.join(os.path.dirname(os.path.abspath(__file__)), "src")
github_artifact_dir = os.path.join(llm_home, '../llm-binary')
libs_dir = os.path.join(llm_home, "bigdl", "llm", "libs")
CONVERT_DEP = ['numpy >= 1.22', 'torch',
'transformers >= 4.31.0', 'sentencepiece',
'transformers == 4.31.0', 'sentencepiece',
'accelerate', 'tabulate']
windows_binarys = [
"llama.dll",