[LLM] Performance test (#8796)
This commit is contained in:
parent
9d0f6a8cce
commit
b8b1b6888b
5 changed files with 191 additions and 4 deletions
66
.github/workflows/llm_performance_tests.yml
vendored
Normal file
66
.github/workflows/llm_performance_tests.yml
vendored
Normal file
|
|
@ -0,0 +1,66 @@
|
|||
name: LLM Performance Test
|
||||
|
||||
# Cancel previous runs in the PR when you push new commits
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-llm-performance-tests-${{ github.event.pull_request.number || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
# Controls when the action will run.
|
||||
on:
|
||||
schedule:
|
||||
- cron: '00 13 * * *' # GMT time, 13:00 GMT == 21:00 China
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
paths:
|
||||
- '.github/workflows/llm_performance_tests.yml'
|
||||
- '.github/workflows/llm-binary-build.yml'
|
||||
- '.github/actions/llm/setup-llm-env/action.yml'
|
||||
- '.github/actions/llm/remove-llm-env/action.yml'
|
||||
- '.github/actions/llm/download-llm-binary/action.yml'
|
||||
workflow_dispatch:
|
||||
workflow_call:
|
||||
|
||||
# A workflow run is made up of one or more jobs that can run sequentially or in parallel
|
||||
jobs:
|
||||
llm-cpp-build:
|
||||
uses: ./.github/workflows/llm-binary-build.yml
|
||||
llm-performance-test:
|
||||
needs: llm-cpp-build
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.9"]
|
||||
instruction: ["AVX512"]
|
||||
runs-on: [ self-hosted, llm, perf ]
|
||||
env:
|
||||
THREAD_NUM: 24
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install --upgrade setuptools==58.0.4
|
||||
python -m pip install --upgrade wheel
|
||||
|
||||
- name: Download llm binary
|
||||
uses: ./.github/actions/llm/download-llm-binary
|
||||
|
||||
- name: Run LLM install (all) test
|
||||
uses: ./.github/actions/llm/setup-llm-env
|
||||
env:
|
||||
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||
|
||||
- name: Run LLM Performance test
|
||||
env:
|
||||
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||
run:
|
||||
bash python/llm/dev/benchmark/run-benchmark-tests.sh
|
||||
|
||||
# - name: Clean up test environment
|
||||
# uses: ./.github/actions/llm/remove-llm-env
|
||||
# env:
|
||||
# ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||
|
|
@ -510,8 +510,9 @@ class BenchmarkWrapper:
|
|||
learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
|
||||
"""
|
||||
|
||||
def __init__(self, model):
|
||||
def __init__(self, model, do_print=True):
|
||||
self.model = model
|
||||
self.do_print = do_print
|
||||
print(self.model.__class__)
|
||||
|
||||
def __getattr__(self, attr):
|
||||
|
|
@ -2445,9 +2446,13 @@ class BenchmarkWrapper:
|
|||
if this_peer_finished and not synced_gpus:
|
||||
break
|
||||
|
||||
print(f"=========First token cost {first_token_time:.4f}s=========")
|
||||
if self.do_print:
|
||||
print(f"=========First token cost {first_token_time:.4f}s=========")
|
||||
if len(last_token_time) > 1:
|
||||
print(f"=========Rest tokens cost average {np.mean(last_token_time):.4f}s ({len(last_token_time)} tokens in all)=========")
|
||||
self.first_cost = first_token_time
|
||||
self.rest_cost_mean = np.mean(last_token_time)
|
||||
if self.do_print:
|
||||
print(f"=========Rest tokens cost average {self.rest_cost_mean:.4f}s ({len(last_token_time)} tokens in all)=========")
|
||||
|
||||
if streamer is not None:
|
||||
streamer.end()
|
||||
|
|
|
|||
94
python/llm/dev/benchmark/pipelines/llama2_test.py
Normal file
94
python/llm/dev/benchmark/pipelines/llama2_test.py
Normal file
|
|
@ -0,0 +1,94 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
# this code is copied from llama2 example test, and added performance test
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from transformers import LlamaTokenizer
|
||||
|
||||
|
||||
import os
|
||||
benchmark_util_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')
|
||||
import sys
|
||||
sys.path.append(benchmark_util_path)
|
||||
from benchmark_util import BenchmarkWrapper
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
|
||||
LLAMA2_PROMPT_FORMAT = """### HUMAN:
|
||||
{prompt}
|
||||
|
||||
### RESPONSE:
|
||||
"""
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
||||
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
trust_remote_code=True)
|
||||
|
||||
|
||||
model = BenchmarkWrapper(model, do_print=False)
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
end = time.time()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Prompt', '-'*20)
|
||||
print(prompt)
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
|
||||
assert "AI is a term" in output_str, "output is not as expected, the correctness may be wrong."
|
||||
llama2_baseline = os.getenv('LLAMA2_BASELINE')
|
||||
if llama2_baseline is None:
|
||||
print('baseline is not set, skipping baseline validation')
|
||||
else:
|
||||
llama2_baseline = float(llama2_baseline)
|
||||
ratio = model.rest_cost_mean / llama2_baseline
|
||||
assert ratio < 1.1, f"performance did not meet baseline, the cost is {(ratio - 1) * 100}% higher than the baseline"
|
||||
|
||||
22
python/llm/dev/benchmark/run-benchmark-tests.sh
Normal file
22
python/llm/dev/benchmark/run-benchmark-tests.sh
Normal file
|
|
@ -0,0 +1,22 @@
|
|||
# Performance tests usually use dedicated machines, see below to set env vars, e.g. model paths
|
||||
# The following environment variables should be ready
|
||||
# ORIGINAL_LLAMA2_PATH
|
||||
# LLAMA2_BASELINE
|
||||
# LLM_DIR
|
||||
|
||||
if [ -z "$THREAD_NUM" ]; then
|
||||
THREAD_NUM=2
|
||||
fi
|
||||
export OMP_NUM_THREADS=$THREAD_NUM
|
||||
|
||||
######## LLAMA2
|
||||
# transformers
|
||||
|
||||
if [ ! -d $ORIGINAL_LLAMA2_PATH ]; then
|
||||
echo "Directory $ORIGINAL_LLAMA2_PATH not found. Downloading from FTP server..."
|
||||
wget -r -nH --no-verbose --cut-dirs=1 $LLM_FTP_URL/${ORIGINAL_LLAMA2_PATH:2} -P $LLM_DIR
|
||||
fi
|
||||
|
||||
echo ">>> Testing LLAMA2 transformers API"
|
||||
taskset -c 0-$((THREAD_NUM - 1)) python python/llm/dev/benchmark/pipelines/llama2_test.py --repo-id-or-model-path $ORIGINAL_LLAMA2_PATH
|
||||
|
||||
|
|
@ -50,7 +50,7 @@ llm_home = os.path.join(os.path.dirname(os.path.abspath(__file__)), "src")
|
|||
github_artifact_dir = os.path.join(llm_home, '../llm-binary')
|
||||
libs_dir = os.path.join(llm_home, "bigdl", "llm", "libs")
|
||||
CONVERT_DEP = ['numpy >= 1.22', 'torch',
|
||||
'transformers >= 4.31.0', 'sentencepiece',
|
||||
'transformers == 4.31.0', 'sentencepiece',
|
||||
'accelerate', 'tabulate']
|
||||
windows_binarys = [
|
||||
"llama.dll",
|
||||
|
|
|
|||
Loading…
Reference in a new issue