[LLM] Performance test (#8796)
This commit is contained in:
parent
9d0f6a8cce
commit
b8b1b6888b
5 changed files with 191 additions and 4 deletions
66
.github/workflows/llm_performance_tests.yml
vendored
Normal file
66
.github/workflows/llm_performance_tests.yml
vendored
Normal file
|
|
@ -0,0 +1,66 @@
|
||||||
|
name: LLM Performance Test
|
||||||
|
|
||||||
|
# Cancel previous runs in the PR when you push new commits
|
||||||
|
concurrency:
|
||||||
|
group: ${{ github.workflow }}-llm-performance-tests-${{ github.event.pull_request.number || github.run_id }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
# Controls when the action will run.
|
||||||
|
on:
|
||||||
|
schedule:
|
||||||
|
- cron: '00 13 * * *' # GMT time, 13:00 GMT == 21:00 China
|
||||||
|
pull_request:
|
||||||
|
branches: [ main ]
|
||||||
|
paths:
|
||||||
|
- '.github/workflows/llm_performance_tests.yml'
|
||||||
|
- '.github/workflows/llm-binary-build.yml'
|
||||||
|
- '.github/actions/llm/setup-llm-env/action.yml'
|
||||||
|
- '.github/actions/llm/remove-llm-env/action.yml'
|
||||||
|
- '.github/actions/llm/download-llm-binary/action.yml'
|
||||||
|
workflow_dispatch:
|
||||||
|
workflow_call:
|
||||||
|
|
||||||
|
# A workflow run is made up of one or more jobs that can run sequentially or in parallel
|
||||||
|
jobs:
|
||||||
|
llm-cpp-build:
|
||||||
|
uses: ./.github/workflows/llm-binary-build.yml
|
||||||
|
llm-performance-test:
|
||||||
|
needs: llm-cpp-build
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
python-version: ["3.9"]
|
||||||
|
instruction: ["AVX512"]
|
||||||
|
runs-on: [ self-hosted, llm, perf ]
|
||||||
|
env:
|
||||||
|
THREAD_NUM: 24
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
- name: Set up Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
python -m pip install --upgrade setuptools==58.0.4
|
||||||
|
python -m pip install --upgrade wheel
|
||||||
|
|
||||||
|
- name: Download llm binary
|
||||||
|
uses: ./.github/actions/llm/download-llm-binary
|
||||||
|
|
||||||
|
- name: Run LLM install (all) test
|
||||||
|
uses: ./.github/actions/llm/setup-llm-env
|
||||||
|
env:
|
||||||
|
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||||
|
|
||||||
|
- name: Run LLM Performance test
|
||||||
|
env:
|
||||||
|
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||||
|
run:
|
||||||
|
bash python/llm/dev/benchmark/run-benchmark-tests.sh
|
||||||
|
|
||||||
|
# - name: Clean up test environment
|
||||||
|
# uses: ./.github/actions/llm/remove-llm-env
|
||||||
|
# env:
|
||||||
|
# ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||||
|
|
@ -510,8 +510,9 @@ class BenchmarkWrapper:
|
||||||
learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
|
learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, model):
|
def __init__(self, model, do_print=True):
|
||||||
self.model = model
|
self.model = model
|
||||||
|
self.do_print = do_print
|
||||||
print(self.model.__class__)
|
print(self.model.__class__)
|
||||||
|
|
||||||
def __getattr__(self, attr):
|
def __getattr__(self, attr):
|
||||||
|
|
@ -2445,9 +2446,13 @@ class BenchmarkWrapper:
|
||||||
if this_peer_finished and not synced_gpus:
|
if this_peer_finished and not synced_gpus:
|
||||||
break
|
break
|
||||||
|
|
||||||
print(f"=========First token cost {first_token_time:.4f}s=========")
|
if self.do_print:
|
||||||
|
print(f"=========First token cost {first_token_time:.4f}s=========")
|
||||||
if len(last_token_time) > 1:
|
if len(last_token_time) > 1:
|
||||||
print(f"=========Rest tokens cost average {np.mean(last_token_time):.4f}s ({len(last_token_time)} tokens in all)=========")
|
self.first_cost = first_token_time
|
||||||
|
self.rest_cost_mean = np.mean(last_token_time)
|
||||||
|
if self.do_print:
|
||||||
|
print(f"=========Rest tokens cost average {self.rest_cost_mean:.4f}s ({len(last_token_time)} tokens in all)=========")
|
||||||
|
|
||||||
if streamer is not None:
|
if streamer is not None:
|
||||||
streamer.end()
|
streamer.end()
|
||||||
|
|
|
||||||
94
python/llm/dev/benchmark/pipelines/llama2_test.py
Normal file
94
python/llm/dev/benchmark/pipelines/llama2_test.py
Normal file
|
|
@ -0,0 +1,94 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
|
||||||
|
# this code is copied from llama2 example test, and added performance test
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||||
|
from transformers import LlamaTokenizer
|
||||||
|
|
||||||
|
|
||||||
|
import os
|
||||||
|
benchmark_util_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')
|
||||||
|
import sys
|
||||||
|
sys.path.append(benchmark_util_path)
|
||||||
|
from benchmark_util import BenchmarkWrapper
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
|
||||||
|
LLAMA2_PROMPT_FORMAT = """### HUMAN:
|
||||||
|
{prompt}
|
||||||
|
|
||||||
|
### RESPONSE:
|
||||||
|
"""
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
||||||
|
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
# Load model in 4 bit,
|
||||||
|
# which convert the relevant layers in the model into INT4 format
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
trust_remote_code=True)
|
||||||
|
|
||||||
|
|
||||||
|
model = BenchmarkWrapper(model, do_print=False)
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
st = time.time()
|
||||||
|
# if your selected model is capable of utilizing previous key/value attentions
|
||||||
|
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||||
|
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||||
|
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
end = time.time()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Prompt', '-'*20)
|
||||||
|
print(prompt)
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
|
|
||||||
|
assert "AI is a term" in output_str, "output is not as expected, the correctness may be wrong."
|
||||||
|
llama2_baseline = os.getenv('LLAMA2_BASELINE')
|
||||||
|
if llama2_baseline is None:
|
||||||
|
print('baseline is not set, skipping baseline validation')
|
||||||
|
else:
|
||||||
|
llama2_baseline = float(llama2_baseline)
|
||||||
|
ratio = model.rest_cost_mean / llama2_baseline
|
||||||
|
assert ratio < 1.1, f"performance did not meet baseline, the cost is {(ratio - 1) * 100}% higher than the baseline"
|
||||||
|
|
||||||
22
python/llm/dev/benchmark/run-benchmark-tests.sh
Normal file
22
python/llm/dev/benchmark/run-benchmark-tests.sh
Normal file
|
|
@ -0,0 +1,22 @@
|
||||||
|
# Performance tests usually use dedicated machines, see below to set env vars, e.g. model paths
|
||||||
|
# The following environment variables should be ready
|
||||||
|
# ORIGINAL_LLAMA2_PATH
|
||||||
|
# LLAMA2_BASELINE
|
||||||
|
# LLM_DIR
|
||||||
|
|
||||||
|
if [ -z "$THREAD_NUM" ]; then
|
||||||
|
THREAD_NUM=2
|
||||||
|
fi
|
||||||
|
export OMP_NUM_THREADS=$THREAD_NUM
|
||||||
|
|
||||||
|
######## LLAMA2
|
||||||
|
# transformers
|
||||||
|
|
||||||
|
if [ ! -d $ORIGINAL_LLAMA2_PATH ]; then
|
||||||
|
echo "Directory $ORIGINAL_LLAMA2_PATH not found. Downloading from FTP server..."
|
||||||
|
wget -r -nH --no-verbose --cut-dirs=1 $LLM_FTP_URL/${ORIGINAL_LLAMA2_PATH:2} -P $LLM_DIR
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo ">>> Testing LLAMA2 transformers API"
|
||||||
|
taskset -c 0-$((THREAD_NUM - 1)) python python/llm/dev/benchmark/pipelines/llama2_test.py --repo-id-or-model-path $ORIGINAL_LLAMA2_PATH
|
||||||
|
|
||||||
|
|
@ -50,7 +50,7 @@ llm_home = os.path.join(os.path.dirname(os.path.abspath(__file__)), "src")
|
||||||
github_artifact_dir = os.path.join(llm_home, '../llm-binary')
|
github_artifact_dir = os.path.join(llm_home, '../llm-binary')
|
||||||
libs_dir = os.path.join(llm_home, "bigdl", "llm", "libs")
|
libs_dir = os.path.join(llm_home, "bigdl", "llm", "libs")
|
||||||
CONVERT_DEP = ['numpy >= 1.22', 'torch',
|
CONVERT_DEP = ['numpy >= 1.22', 'torch',
|
||||||
'transformers >= 4.31.0', 'sentencepiece',
|
'transformers == 4.31.0', 'sentencepiece',
|
||||||
'accelerate', 'tabulate']
|
'accelerate', 'tabulate']
|
||||||
windows_binarys = [
|
windows_binarys = [
|
||||||
"llama.dll",
|
"llama.dll",
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue