LLM: Add gguf mistral model support (#9691)

* add mistral support

* need to upgrade transformers version

* update
This commit is contained in:
Wang, Jian4 2023-12-15 13:37:39 +08:00 committed by GitHub
parent 496bb2e845
commit b8437a1c1e
4 changed files with 126 additions and 4 deletions

View file

@ -24,7 +24,7 @@ conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
pip install transformers==4.33.0 # upgrade transformers pip install transformers==4.34.0 # upgrade transformers
``` ```
### 2. Run ### 2. Run

View file

@ -25,7 +25,7 @@ conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default # below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need # you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install transformers==4.33.0 # upgrade transformers pip install transformers==4.34.0 # upgrade transformers
``` ```
### 2. Configures OneAPI environment variables ### 2. Configures OneAPI environment variables

View file

@ -40,6 +40,11 @@ def load_gguf_model(fpath: str, dtype: torch.dtype = torch.float):
with torch.no_grad(): with torch.no_grad():
if model_family == "llama": if model_family == "llama":
model_name = loader.config["general.name"].lower()
if "mistral" in model_name:
from .models.mistral import load_gguf_mistral
model, tokenizer = load_gguf_mistral(loader, dtype)
else:
from .models.llama import load_gguf_llama from .models.llama import load_gguf_llama
model, tokenizer = load_gguf_llama(loader, dtype) model, tokenizer = load_gguf_llama(loader, dtype)

View file

@ -0,0 +1,117 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import torch
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from tempfile import NamedTemporaryFile
from transformers import MistralConfig, MistralForCausalLM, LlamaTokenizer
from ..gguf import GGUFFileLoader
def load_gguf_mistral(loader: GGUFFileLoader, dtype: torch.dtype = torch.float):
config = loader.config
mistral_config = MistralConfig(
vocab_size=len(config['tokenizer.ggml.tokens']),
hidden_size=config['llama.embedding_length'],
intermediate_size=config['llama.feed_forward_length'],
num_hidden_layers=config['llama.block_count'],
num_attention_heads=config['llama.attention.head_count'],
num_key_value_heads=config['llama.attention.head_count_kv'],
hidden_act="silu",
max_position_embeddings=config['llama.context_length'],
rms_norm_eps=config['llama.attention.layer_norm_rms_epsilon'],
use_cache=True,
pad_token_id=None,
bos_token_id=config['tokenizer.ggml.bos_token_id'],
eos_token_id=config['tokenizer.ggml.eos_token_id'],
pretraining_tp=1,
)
ckpt = loader.tensors(dtype)
n_head = config['llama.attention.head_count']
n_head_kv = config['llama.attention.head_count_kv']
ckpt = restore_mistral_weight(ckpt, n_head, n_head_kv)
state_dict = {}
state_dict['model.embed_tokens.weight'] = ckpt['token_embd.weight']
state_dict['model.norm.weight'] = ckpt['output_norm.weight']
state_dict['lm_head.weight'] = ckpt['output.weight']
for i in range(config['llama.block_count']):
state_dict[f'model.layers.{i}.self_attn.q_proj.weight'] = \
ckpt[f'blk.{i}.attn_q.weight']
state_dict[f'model.layers.{i}.self_attn.k_proj.weight'] = \
ckpt[f'blk.{i}.attn_k.weight']
state_dict[f'model.layers.{i}.self_attn.v_proj.weight'] = \
ckpt[f'blk.{i}.attn_v.weight']
state_dict[f'model.layers.{i}.self_attn.o_proj.weight'] = \
ckpt[f'blk.{i}.attn_output.weight']
state_dict[f'model.layers.{i}.mlp.gate_proj.weight'] = \
ckpt[f'blk.{i}.ffn_gate.weight']
state_dict[f'model.layers.{i}.mlp.up_proj.weight'] = \
ckpt[f'blk.{i}.ffn_up.weight']
state_dict[f'model.layers.{i}.mlp.down_proj.weight'] = \
ckpt[f'blk.{i}.ffn_down.weight']
state_dict[f'model.layers.{i}.input_layernorm.weight'] = \
ckpt[f'blk.{i}.attn_norm.weight']
state_dict[f'model.layers.{i}.post_attention_layernorm.weight'] = \
ckpt[f'blk.{i}.ffn_norm.weight']
with init_empty_weights():
model = MistralForCausalLM(mistral_config)
for name, weight in state_dict.items():
set_module_tensor_to_device(model, name, "cpu", weight)
model = model.cpu()
# see https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
from transformers.convert_slow_tokenizer import import_protobuf
spm_pb2 = import_protobuf("Failed to import protobuf")
pieces = loader.tokenizer_pieces()
trainer_spec = spm_pb2.TrainerSpec(byte_fallback=True,
model_type=spm_pb2.TrainerSpec.ModelType.BPE)
proto = spm_pb2.ModelProto(pieces=pieces, trainer_spec=trainer_spec)
proto = proto.SerializeToString()
with NamedTemporaryFile(delete=False) as f:
f.write(proto)
f.close()
tokenizer = LlamaTokenizer(f.name)
os.remove(f.name)
return model, tokenizer
def restore_mistral_weight(ckpt: dict, n_head: int, n_head_kv: int):
# see https://github.com/ggerganov/llama.cpp/blob
# /3e73d31d9cc0232882ce61c64742aff3ecfec416/convert.py#L978
for name, weight in ckpt.items():
head, hd_size = weight.shape[0], weight.shape[1:]
if name.endswith("attn_q.weight"):
ckpt[name] = (weight.reshape(n_head, head // n_head // 2, 2, *hd_size)
.swapaxes(1, 2)
.reshape(weight.shape))
elif name.endswith("attn_k.weight"):
ckpt[name] = (weight.reshape(n_head_kv, head // n_head_kv // 2, 2, *hd_size)
.swapaxes(1, 2)
.reshape(weight.shape))
return ckpt