Divide core-xe packages (#11131)
* temp * add batch * fix style * update package name * fix style * add workflow * use temp version to run uts * trigger performance test * trigger win igpu perf * revert workflow & setup
This commit is contained in:
parent
c9168b85b7
commit
b6b70d1ba0
28 changed files with 427 additions and 373 deletions
8
.github/actions/llm/setup-llm-env/action.yml
vendored
8
.github/actions/llm/setup-llm-env/action.yml
vendored
|
|
@ -13,12 +13,20 @@ runs:
|
|||
run: |
|
||||
# make sure we install the latest version for bigdl-core-xe related packages
|
||||
pip uninstall bigdl-core-xe -y || true
|
||||
pip uninstall bigdl-core-xe-batch -y || true
|
||||
pip uninstall bigdl-core-xe-addons -y || true
|
||||
pip uninstall bigdl-core-xe-esimd -y || true
|
||||
pip uninstall bigdl-core-xe-21 -y || true
|
||||
pip uninstall bigdl-core-xe-batch-21 -y || true
|
||||
pip uninstall bigdl-core-xe-addons-21 -y || true
|
||||
pip uninstall bigdl-core-xe-esimd-21 -y || true
|
||||
sed -i 's/"bigdl-core-xe==" + CORE_XE_VERSION + "/"bigdl-core-xe/g' python/llm/setup.py
|
||||
sed -i 's/"bigdl-core-xe-batch==" + CORE_XE_VERSION + "/"bigdl-core-xe-batch/g' python/llm/setup.py
|
||||
sed -i 's/"bigdl-core-xe-addons==" + CORE_XE_VERSION + "/"bigdl-core-xe-addons/g' python/llm/setup.py
|
||||
sed -i 's/"bigdl-core-xe-esimd==" + CORE_XE_VERSION + "/"bigdl-core-xe-esimd/g' python/llm/setup.py
|
||||
sed -i 's/"bigdl-core-xe-21==" + CORE_XE_VERSION/"bigdl-core-xe-21"/g' python/llm/setup.py
|
||||
sed -i 's/"bigdl-core-xe-batch-21==" + CORE_XE_VERSION/"bigdl-core-xe-batch-21"/g' python/llm/setup.py
|
||||
sed -i 's/"bigdl-core-xe-addons-21==" + CORE_XE_VERSION/"bigdl-core-xe-addons-21"/g' python/llm/setup.py
|
||||
sed -i 's/"bigdl-core-xe-esimd-21==" + CORE_XE_VERSION/"bigdl-core-xe-esimd-21"/g' python/llm/setup.py
|
||||
|
||||
pip install requests
|
||||
|
|
|
|||
2
.github/workflows/llm_performance_tests.yml
vendored
2
.github/workflows/llm_performance_tests.yml
vendored
|
|
@ -312,6 +312,8 @@ jobs:
|
|||
# shell: bash
|
||||
# run: |
|
||||
# sed -i 's/"bigdl-core-xe-21==" + CORE_XE_VERSION/"bigdl-core-xe-21"/g' python/llm/setup.py
|
||||
# sed -i 's/"bigdl-core-xe-batch-21==" + CORE_XE_VERSION/"bigdl-core-xe-batch-21"/g' python/llm/setup.py
|
||||
# sed -i 's/"bigdl-core-xe-addons-21==" + CORE_XE_VERSION/"bigdl-core-xe-addons-21"/g' python/llm/setup.py
|
||||
# sed -i 's/"bigdl-core-xe-esimd-21==" + CORE_XE_VERSION/"bigdl-core-xe-esimd-21"/g' python/llm/setup.py
|
||||
|
||||
# - name: Install ipex-llm and other related packages (install from source)
|
||||
|
|
|
|||
|
|
@ -298,6 +298,8 @@ def setup_package():
|
|||
"torchvision==0.16.0a0",
|
||||
"intel_extension_for_pytorch==2.1.10+xpu",
|
||||
"bigdl-core-xe-21==" + CORE_XE_VERSION,
|
||||
"bigdl-core-xe-batch-21==" + CORE_XE_VERSION,
|
||||
"bigdl-core-xe-addons-21==" + CORE_XE_VERSION,
|
||||
"bigdl-core-xe-esimd-21==" + CORE_XE_VERSION]
|
||||
xpu_21_requires += oneapi_2024_0_requires
|
||||
# default to ipex 2.1 for linux and windows
|
||||
|
|
|
|||
|
|
@ -16,7 +16,7 @@
|
|||
|
||||
|
||||
import torch
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
torch_bmm_old_ = torch.bmm
|
||||
|
||||
|
||||
|
|
@ -30,7 +30,7 @@ def torch_bmm(a, b):
|
|||
if a.size(1) == 1:
|
||||
torch_bmm_old_(a, b, out=C)
|
||||
else:
|
||||
linear_q4_0.bmm(a.contiguous(), b.contiguous(), C)
|
||||
xe_linear.bmm(a.contiguous(), b.contiguous(), C)
|
||||
return C
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -104,11 +104,11 @@ class LowBitEmbedding(torch.nn.Embedding):
|
|||
"`LowBitEmbedding` only supports GPU now.")
|
||||
try:
|
||||
import intel_extension_for_pytorch
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
except ModuleNotFoundError:
|
||||
invalidInputError(False,
|
||||
"Please `pip install bigdl_core_xe` first.")
|
||||
|
||||
result = linear_q4_0.dequantize_rows(x.contiguous(), self.weight.data,
|
||||
self.weight.qtype, self.embedding_dim)
|
||||
result = xe_linear.dequantize_rows(x.contiguous(), self.weight.data,
|
||||
self.weight.qtype, self.embedding_dim)
|
||||
return result.to(self.torch_dtype)
|
||||
|
|
|
|||
|
|
@ -42,26 +42,26 @@ class FastRopeEmbedding(torch.autograd.Function):
|
|||
@staticmethod
|
||||
@custom_fwd
|
||||
def forward(ctx, x, position_ids):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
x_embed = torch.empty(x.shape, dtype=x.dtype, device=x.device)
|
||||
linear_q4_0.apply_rotary_embedding_half_q_or_k(x, position_ids,
|
||||
x_embed, False)
|
||||
xe_addons.apply_rotary_embedding_half_q_or_k(x, position_ids,
|
||||
x_embed, False)
|
||||
ctx.save_for_backward(position_ids)
|
||||
return x_embed
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
# LOG.info(f"backward, grad_output: {grad_output}")
|
||||
position_ids, = ctx.saved_tensors
|
||||
dx = torch.empty(grad_output.shape,
|
||||
dtype=grad_output.dtype,
|
||||
device=grad_output.device)
|
||||
linear_q4_0.apply_rotary_embedding_half_q_or_k(grad_output,
|
||||
position_ids,
|
||||
dx,
|
||||
True)
|
||||
xe_addons.apply_rotary_embedding_half_q_or_k(grad_output,
|
||||
position_ids,
|
||||
dx,
|
||||
True)
|
||||
# LOG.info(f"backward, dx: {dx}, position_ids: {position_ids},
|
||||
# requires_grad: {ctx.needs_input_grad}")
|
||||
return dx, None
|
||||
|
|
|
|||
|
|
@ -320,6 +320,26 @@ def reshape_lm_head_input(x):
|
|||
return x
|
||||
|
||||
|
||||
def use_batch_forward(x: torch.Tensor, qtype: int, output_len: int):
|
||||
device = get_xpu_device_type(x)
|
||||
batch_size = x.shape[0]
|
||||
hard_condition = (
|
||||
x.dtype in [torch.float, torch.half]
|
||||
and x.shape[1] % 256 == 0
|
||||
and output_len % 32 == 0
|
||||
and device in ["arc", "flex", "pvc", "mtl"]
|
||||
and qtype in [SYM_INT4, ASYM_INT4, SYM_INT8, FP4,
|
||||
FP8E5, FP6]
|
||||
and batch_size <= 64
|
||||
)
|
||||
if hard_condition:
|
||||
return (
|
||||
batch_size > 1
|
||||
or (device in ["arc", "flex"] and qtype in [SYM_INT8, FP4])
|
||||
)
|
||||
return False
|
||||
|
||||
|
||||
# Rename to FP4Params to trigger initializing
|
||||
# the params layer with all parameters on the CPU
|
||||
# https://github.com/huggingface/accelerate/blob/main/src/accelerate/utils/modeling.py#L333
|
||||
|
|
@ -524,8 +544,8 @@ class MatMulLowBit(torch.autograd.Function):
|
|||
@custom_fwd
|
||||
def forward(ctx, A, weight, input_seq_size):
|
||||
ctx.is_empty = False
|
||||
import linear_q4_0
|
||||
result = linear_q4_0.forward_new(A, weight.data, weight.qtype, input_seq_size)
|
||||
import xe_linear
|
||||
result = xe_linear.forward_new(A, weight.data, weight.qtype, input_seq_size)
|
||||
if any(ctx.needs_input_grad[:2]):
|
||||
ctx.tensors = (A, weight)
|
||||
else:
|
||||
|
|
@ -535,7 +555,7 @@ class MatMulLowBit(torch.autograd.Function):
|
|||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output):
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
if ctx.is_empty:
|
||||
bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias)
|
||||
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
|
||||
|
|
@ -545,7 +565,7 @@ class MatMulLowBit(torch.autograd.Function):
|
|||
if req_gradA:
|
||||
if torch.xpu.is_autocast_xpu_enabled():
|
||||
grad_output = grad_output.to(torch.xpu.get_autocast_xpu_dtype())
|
||||
dequant_weight = linear_q4_0.dequant(A, weight.data, weight.qtype)
|
||||
dequant_weight = xe_linear.dequant(A, weight.data, weight.qtype)
|
||||
grad_A = torch.matmul(grad_output, dequant_weight.reshape(weight._shape))
|
||||
|
||||
return grad_A, grad_weight, None
|
||||
|
|
@ -659,7 +679,7 @@ class LowBitLinear(nn.Linear):
|
|||
# GPU logic
|
||||
try:
|
||||
import intel_extension_for_pytorch
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
from ipex_llm.transformers.models.utils import use_xmx
|
||||
except ModuleNotFoundError:
|
||||
invalidInputError(False,
|
||||
|
|
@ -678,12 +698,12 @@ class LowBitLinear(nn.Linear):
|
|||
if x_2d.requires_grad:
|
||||
result = MatMulLowBit.apply(x_2d, self.weight, input_seq_size)
|
||||
else:
|
||||
result = linear_q4_0.forward_new(x_2d, self.weight.data,
|
||||
self.weight.qtype,
|
||||
input_seq_size)
|
||||
result = xe_linear.forward_new(x_2d, self.weight.data,
|
||||
self.weight.qtype,
|
||||
input_seq_size)
|
||||
elif self.enable_xetla:
|
||||
x_2d = x_2d.half()
|
||||
result = linear_q4_0.mm_xetla(x_2d, self.weight.data, self.qtype)
|
||||
result = xe_linear.mm_xetla(x_2d, self.weight.data, self.qtype)
|
||||
else:
|
||||
# inference path
|
||||
# current workaround to reduce first token latency of fp32 input
|
||||
|
|
@ -696,12 +716,24 @@ class LowBitLinear(nn.Linear):
|
|||
if self.conver_to_half and x_2d.shape[0] > 1 and x_2d.dtype == torch.float32 and \
|
||||
not use_xmx(x_2d, self.weight.qtype):
|
||||
x_2d = x_2d.half()
|
||||
result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype,
|
||||
input_seq_size)
|
||||
if use_batch_forward(x_2d, self.weight.qtype, self.out_len):
|
||||
import xe_batch
|
||||
result = xe_batch.batch_forward(x_2d, self.weight.data,
|
||||
self.weight.qtype,
|
||||
input_seq_size)
|
||||
else:
|
||||
result = xe_linear.forward_new(x_2d, self.weight.data, self.weight.qtype,
|
||||
input_seq_size)
|
||||
result = result.to(x.dtype)
|
||||
else:
|
||||
result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype,
|
||||
input_seq_size)
|
||||
if use_batch_forward(x_2d, self.weight.qtype, self.out_len):
|
||||
import xe_batch
|
||||
result = xe_batch.batch_forward(x_2d, self.weight.data,
|
||||
self.weight.qtype,
|
||||
input_seq_size)
|
||||
else:
|
||||
result = xe_linear.forward_new(x_2d, self.weight.data, self.weight.qtype,
|
||||
input_seq_size)
|
||||
if do_empty_cache:
|
||||
torch.xpu.empty_cache()
|
||||
result = result.view(new_shape)
|
||||
|
|
|
|||
|
|
@ -168,9 +168,9 @@ def baichuan_attention_forward_7b_quantized(
|
|||
dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_weights = None
|
||||
|
||||
invalidInputError(
|
||||
|
|
@ -277,8 +277,9 @@ def baichuan_attention_forward_7b_origin(
|
|||
attn_weights = None
|
||||
elif not self.training and not hidden_states.requires_grad and \
|
||||
use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_output = attn_output.view(query_states.shape)
|
||||
attn_weights = None
|
||||
else:
|
||||
|
|
@ -400,8 +401,8 @@ def baichuan_attention_forward_13b_quantized(
|
|||
query_states.dtype)
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
|
||||
import xe_addons
|
||||
attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
|
||||
|
||||
attn_weights = attn_weights / math.sqrt(self.head_dim)
|
||||
|
||||
|
|
@ -419,8 +420,9 @@ def baichuan_attention_forward_13b_quantized(
|
|||
if query_states.size(2) != 1 or query_states.device.type != 'xpu':
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.attn_value_fp8_matmul(attn_weights,
|
||||
value_states)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
|
|
|||
|
|
@ -41,9 +41,9 @@ def pre_compute_inv_freq(module: torch.nn.Module):
|
|||
|
||||
def baichuan_13b_rms_norm_forward(self, hidden_states):
|
||||
if hidden_states.device.type == "xpu" and not (self.training or hidden_states.requires_grad):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
|
||||
output = linear_q4_0.rms_norm(self.weight, x_2d, self.epsilon)
|
||||
output = xe_addons.rms_norm(self.weight, x_2d, self.epsilon)
|
||||
return output.reshape(hidden_states.shape)
|
||||
|
||||
input_dtype = hidden_states.dtype
|
||||
|
|
@ -60,10 +60,10 @@ def baichuan_mlp_forward(
|
|||
x_2d = x.view(-1, x.shape[-1])
|
||||
qtype = getattr(self.gate_proj, "qtype", None)
|
||||
if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
if not x_2d.is_contiguous():
|
||||
x_2d = x_2d.contiguous()
|
||||
return self.down_proj(linear_q4_0.mlp_forward_xpu(
|
||||
return self.down_proj(xe_linear.mlp_forward_xpu(
|
||||
x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
|
||||
x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
|
||||
SILU, qtype
|
||||
|
|
@ -96,9 +96,9 @@ def baichuan_attention_forward_7b(
|
|||
|
||||
# IPEX-LLM OPT: fuse rope
|
||||
if should_use_fuse_rope(hidden_states, position_ids, self.training):
|
||||
import linear_q4_0
|
||||
linear_q4_0.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
|
||||
query_states, key_states)
|
||||
import xe_addons
|
||||
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
|
||||
query_states, key_states)
|
||||
else:
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
|
|
@ -126,18 +126,20 @@ def baichuan_attention_forward_7b(
|
|||
value_states.to(dtype=torch.float16),
|
||||
is_causal=True).to(hidden_states.dtype)
|
||||
elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
if use_quantize_kv:
|
||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
else:
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
if use_quantize_kv:
|
||||
attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
|
||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
|
||||
value_states)
|
||||
else:
|
||||
attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
|
||||
attn_output = xe_addons.sdp_causal(query_states, key_states, value_states)
|
||||
else:
|
||||
if use_quantize_kv:
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
|
|
@ -202,8 +204,8 @@ def baichuan_attention_forward_13b(
|
|||
attention_mask = attention_mask[:, None, -q_len:, :]
|
||||
|
||||
if use_quantize_kv and q_len == 1:
|
||||
import linear_q4_0
|
||||
attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
|
||||
import xe_addons
|
||||
attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
|
||||
else:
|
||||
if use_quantize_kv:
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
|
|
@ -216,8 +218,8 @@ def baichuan_attention_forward_13b(
|
|||
attn_weights = attn_weights.to(query_states.dtype)
|
||||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
||||
if use_quantize_kv and q_len == 1:
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.attn_value_fp8_matmul(attn_weights, value_states)
|
||||
else:
|
||||
attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states)
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
|
|
|
|||
|
|
@ -66,12 +66,12 @@ def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training:
|
|||
|
||||
def bloom_layer_norm_forward(self, hidden_states):
|
||||
if use_fused_layer_norm(hidden_states, self.training):
|
||||
import linear_q4_0
|
||||
result = linear_q4_0.fused_layer_norm(hidden_states,
|
||||
[self.weight.size(0)],
|
||||
self.weight,
|
||||
self.bias,
|
||||
self.eps)
|
||||
import xe_addons
|
||||
result = xe_addons.fused_layer_norm(hidden_states,
|
||||
[self.weight.size(0)],
|
||||
self.weight,
|
||||
self.bias,
|
||||
self.eps)
|
||||
# if nelement == 0, means fused norm failed, go back to python implement.
|
||||
if result.nelement != 0:
|
||||
return result
|
||||
|
|
|
|||
|
|
@ -111,9 +111,9 @@ def should_split_qkv_tensor(query_layer, bsz, n_head, seq_len):
|
|||
|
||||
def chatglm_rms_norm_forward(self, hidden_states):
|
||||
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
|
||||
output = linear_q4_0.rms_norm(self.weight, x_2d, self.eps)
|
||||
output = xe_addons.rms_norm(self.weight, x_2d, self.eps)
|
||||
return output.reshape(hidden_states.shape)
|
||||
|
||||
input_dtype = hidden_states.dtype
|
||||
|
|
@ -322,8 +322,8 @@ def chatglm2_quantized_attention_forward_8eb45c(
|
|||
context_layer = torch.matmul(attn.to(value.dtype), value)
|
||||
else:
|
||||
key, value = k_cache, v_cache
|
||||
import linear_q4_0
|
||||
context_layer = linear_q4_0.sdp_fp8(query_layer, key, value, attn_bias)
|
||||
import xe_addons
|
||||
context_layer = xe_addons.sdp_fp8(query_layer, key, value, attn_bias)
|
||||
|
||||
# context_layer's shape: [bs, n_head, seq_len, head_dim] -> [seq_len, bs, n_head * head_dim]
|
||||
context_layer = context_layer.permute(2, 0, 1, 3).contiguous().view(seq_len, batch_size, -1)
|
||||
|
|
@ -572,8 +572,8 @@ def core_attn_forward_8eb45c(query_layer, key_layer, value_layer, attention_mask
|
|||
|
||||
if use_sdp(query_layer.shape[2], key_layer.shape[2],
|
||||
query_layer.shape[-1], query_layer):
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp(query_layer, key_layer, value_layer, attn_bias)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp(query_layer, key_layer, value_layer, attn_bias)
|
||||
context_layer = attn_output.view(query_layer.shape)
|
||||
else:
|
||||
head_dim = query_layer.size(-1)
|
||||
|
|
|
|||
|
|
@ -261,9 +261,8 @@ def cohere_attention_forward_quantized(
|
|||
cache_kwargs, new_layout=True)
|
||||
if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
|
||||
and not hidden_states.requires_grad:
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask)
|
||||
attn_weights = None
|
||||
else:
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states,
|
||||
|
|
@ -325,18 +324,18 @@ def cohere_attention_forward_origin(
|
|||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
kv_seq_len += 1
|
||||
# update past_key_value's seem_tokens and kv caches.
|
||||
if self.layer_idx == 0:
|
||||
|
|
@ -421,12 +420,12 @@ def cohere_attention_forward_origin(
|
|||
attn_weights = None
|
||||
elif not self.training and not hidden_states.requires_grad and \
|
||||
use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
if attention_mask is not None:
|
||||
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||||
else:
|
||||
causal_mask = None
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, causal_mask)
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
|
||||
attn_output = attn_output.view(query_states.shape)
|
||||
attn_weights = None
|
||||
else:
|
||||
|
|
|
|||
|
|
@ -79,9 +79,9 @@ def should_use_fuse_rope(self, hidden_states, position_ids):
|
|||
|
||||
def gemma_rms_norm_forward(self, hidden_states):
|
||||
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
|
||||
output = linear_q4_0.rms_norm(self.weight + 1, x_2d, self.eps)
|
||||
output = xe_addons.rms_norm(self.weight + 1, x_2d, self.eps)
|
||||
return output.reshape(hidden_states.shape)
|
||||
|
||||
input_dtype = hidden_states.dtype
|
||||
|
|
@ -100,10 +100,10 @@ def gemma_mlp_forward(
|
|||
bsz, hidden_size = x_2d.shape
|
||||
qtype = getattr(self.gate_proj, "qtype", None)
|
||||
if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
if not x_2d.is_contiguous():
|
||||
x_2d = x_2d.contiguous()
|
||||
out = self.down_proj(linear_q4_0.mlp_forward_xpu(
|
||||
out = self.down_proj(xe_linear.mlp_forward_xpu(
|
||||
x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
|
||||
x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
|
||||
GELU, qtype
|
||||
|
|
@ -146,17 +146,17 @@ def gemma_attention_forward(
|
|||
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
kv_seq_len += 1
|
||||
|
||||
# update past_key_value's seem_tokens and kv caches.
|
||||
|
|
|
|||
|
|
@ -398,18 +398,18 @@ def internlm_xcomposser2_attention_forward(
|
|||
|
||||
# IPEX-LLM OPT: sdp
|
||||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
if use_quantize_kv:
|
||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_output = xe_linear.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
else:
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
|
||||
attn_output = xe_linear.sdp(query_states, key_states, value_states, attention_mask)
|
||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
if use_quantize_kv:
|
||||
attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
|
||||
attn_output = xe_linear.sdp_fp8_causal(query_states, key_states, value_states)
|
||||
else:
|
||||
attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
|
||||
attn_output = xe_linear.sdp_causal(query_states, key_states, value_states)
|
||||
else:
|
||||
if use_quantize_kv:
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
|
|
|
|||
|
|
@ -169,9 +169,9 @@ def llama_model_forward_4_38(
|
|||
|
||||
def llama_rms_norm_forward(self, hidden_states):
|
||||
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
|
||||
output = linear_q4_0.rms_norm(self.weight, x_2d, self.variance_epsilon)
|
||||
output = xe_addons.rms_norm(self.weight, x_2d, self.variance_epsilon)
|
||||
return output.reshape(hidden_states.shape)
|
||||
|
||||
input_dtype = hidden_states.dtype
|
||||
|
|
@ -190,10 +190,10 @@ def llama_mlp_forward(
|
|||
bsz, hidden_size = x_2d.shape
|
||||
qtype = getattr(self.gate_proj, "qtype", None)
|
||||
if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
if not x_2d.is_contiguous():
|
||||
x_2d = x_2d.contiguous()
|
||||
out = self.down_proj(linear_q4_0.mlp_forward_xpu(
|
||||
out = self.down_proj(xe_linear.mlp_forward_xpu(
|
||||
x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
|
||||
x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
|
||||
SILU, qtype
|
||||
|
|
@ -429,18 +429,18 @@ def llama_attention_forward_4_31_quantized(
|
|||
dtype=hidden_states.dtype,
|
||||
device=device
|
||||
)
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
tmp_cache_k, tmp_cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
0,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
tmp_cache_k, tmp_cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
0,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
|
|
@ -504,9 +504,8 @@ def llama_attention_forward_4_31_quantized(
|
|||
bsz, q_len, kv_seq_len,
|
||||
self.head_dim, self.num_heads, output_attentions)
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask)
|
||||
attn_weights = None
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
|
|
@ -562,18 +561,18 @@ def llama_attention_forward_4_31_original(
|
|||
kv_seq_len = past_key_value[0].shape[-2]
|
||||
cache_k = past_key_value[0]
|
||||
cache_v = past_key_value[1]
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
kv_seq_len += 1
|
||||
|
||||
else:
|
||||
|
|
@ -625,12 +624,12 @@ def llama_attention_forward_4_31_original(
|
|||
self.k_proj,
|
||||
self.v_proj,
|
||||
self.q_proj.weight.qtype,)
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
q_out_len = self.q_proj.out_len
|
||||
k_out_len = self.k_proj.out_len
|
||||
v_out_len = self.v_proj.out_len
|
||||
qkv_states = linear_q4_0.mm_xetla(hidden_states, self.qkv_proj_qweight,
|
||||
self.q_proj.weight.qtype)
|
||||
qkv_states = xe_linear.mm_xetla(hidden_states, self.qkv_proj_qweight,
|
||||
self.q_proj.weight.qtype)
|
||||
query_states = qkv_states[:, :, :q_out_len]
|
||||
key_states = qkv_states[:, :, q_out_len:q_out_len + k_out_len]
|
||||
value_states = qkv_states[:, :, q_out_len + k_out_len:]
|
||||
|
|
@ -712,8 +711,8 @@ def llama_attention_forward_4_31_original(
|
|||
attn_weights = None
|
||||
elif not self.training and not hidden_states.requires_grad and \
|
||||
use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
|
||||
attn_output = attn_output.view(query_states.shape)
|
||||
attn_weights = None
|
||||
else:
|
||||
|
|
@ -811,19 +810,19 @@ def llama_attention_selective_batching_forward_4_31(
|
|||
past_k = new_cache_k
|
||||
past_v = new_cache_v
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
past_k, past_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,
|
||||
)
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
past_k, past_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,
|
||||
)
|
||||
kv_seq_len += 1
|
||||
else:
|
||||
if self.config.pretraining_tp > 1:
|
||||
|
|
@ -1028,18 +1027,18 @@ def llama_attention_forward_4_38_quantized(
|
|||
dtype=hidden_states.dtype,
|
||||
device=device
|
||||
)
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
tmp_cache_k, tmp_cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
0,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
tmp_cache_k, tmp_cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
0,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
|
|
@ -1176,13 +1175,12 @@ def llama_attention_forward_4_38_quantized(
|
|||
dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
else:
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
if cache_position is not None:
|
||||
new_attn_mask = attention_mask[:, :, kv_seq_len-q_len:kv_seq_len, 0:kv_seq_len]
|
||||
else:
|
||||
new_attn_mask = attention_mask
|
||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||
new_attn_mask)
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, new_attn_mask)
|
||||
attn_weights = None
|
||||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
|
|
@ -1251,18 +1249,18 @@ def llama_attention_forward_4_38_original(
|
|||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
kv_seq_len += 1
|
||||
# update past_key_value's seem_tokens and kv caches.
|
||||
if self.layer_idx == 0:
|
||||
|
|
@ -1319,13 +1317,13 @@ def llama_attention_forward_4_38_original(
|
|||
self.k_proj,
|
||||
self.v_proj,
|
||||
self.q_proj.weight.qtype,)
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
q_out_len = self.q_proj.out_len
|
||||
k_out_len = self.k_proj.out_len
|
||||
v_out_len = self.v_proj.out_len
|
||||
qkv_states = linear_q4_0.mm_xetla(hidden_states,
|
||||
self.qkv_proj_qweight,
|
||||
self.q_proj.weight.qtype)
|
||||
qkv_states = xe_linear.mm_xetla(hidden_states,
|
||||
self.qkv_proj_qweight,
|
||||
self.q_proj.weight.qtype)
|
||||
query_states = qkv_states[:, :, :q_out_len]
|
||||
key_states = qkv_states[:, :, q_out_len:q_out_len + k_out_len]
|
||||
value_states = qkv_states[:, :, q_out_len + k_out_len:]
|
||||
|
|
@ -1425,8 +1423,9 @@ def llama_attention_forward_4_38_original(
|
|||
attn_weights = None
|
||||
elif not self.training and not hidden_states.requires_grad and \
|
||||
use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, new_attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||
new_attention_mask)
|
||||
attn_output = attn_output.view(query_states.shape)
|
||||
attn_weights = None
|
||||
else:
|
||||
|
|
|
|||
|
|
@ -278,17 +278,17 @@ def mistral_attention_forward_quantized(
|
|||
dtype=hidden_states.dtype,
|
||||
device=device
|
||||
)
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
tmp_cache_k, tmp_cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
0,
|
||||
self.head_dim)
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
tmp_cache_k, tmp_cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
0,
|
||||
self.head_dim)
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
|
|
@ -427,9 +427,9 @@ def mistral_attention_forward_quantized(
|
|||
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_weights = None
|
||||
|
||||
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
|
||||
|
|
@ -476,17 +476,17 @@ def mistral_attention_forward_original(
|
|||
kv_seq_len = past_key_value[0].shape[-2]
|
||||
cache_k = past_key_value[0]
|
||||
cache_v = past_key_value[1]
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
kv_seq_len += 1
|
||||
else:
|
||||
|
||||
|
|
@ -496,13 +496,13 @@ def mistral_attention_forward_original(
|
|||
self.k_proj,
|
||||
self.v_proj,
|
||||
self.q_proj.qtype)
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
q_out_len = self.q_proj.out_len
|
||||
k_out_len = self.k_proj.out_len
|
||||
v_out_len = self.v_proj.out_len
|
||||
qkv_states = linear_q4_0.mm_xetla(hidden_states,
|
||||
self.qkv_proj_qweight,
|
||||
self.q_proj.qtype)
|
||||
qkv_states = xe_linear.mm_xetla(hidden_states,
|
||||
self.qkv_proj_qweight,
|
||||
self.q_proj.qtype)
|
||||
query_states = qkv_states[:, :, :q_out_len]
|
||||
key_states = qkv_states[:, :, q_out_len:q_out_len + k_out_len]
|
||||
value_states = qkv_states[:, :, q_out_len + k_out_len:]
|
||||
|
|
@ -592,8 +592,8 @@ def mistral_attention_forward_original(
|
|||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
elif use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||
# new fp16 sdp doesn't require repeat_kv
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
|
||||
attn_output = attn_output.view(query_states.shape)
|
||||
attn_weights = None
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
|
|
@ -695,17 +695,17 @@ def mistral_attention_forward_4_36_quantized(
|
|||
dtype=hidden_states.dtype,
|
||||
device=device
|
||||
)
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
tmp_cache_k, tmp_cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
0,
|
||||
self.head_dim)
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
tmp_cache_k, tmp_cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
0,
|
||||
self.head_dim)
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
|
|
@ -852,9 +852,8 @@ def mistral_attention_forward_4_36_quantized(
|
|||
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask)
|
||||
attn_weights = None
|
||||
|
||||
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
|
||||
|
|
@ -905,17 +904,17 @@ def mistral_attention_forward_4_36_original(
|
|||
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
kv_seq_len += 1
|
||||
|
||||
# update past_key_value's seem_tokens and kv caches.
|
||||
|
|
@ -931,13 +930,13 @@ def mistral_attention_forward_4_36_original(
|
|||
self.k_proj,
|
||||
self.v_proj,
|
||||
self.q_proj.qtype)
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
q_out_len = self.q_proj.out_len
|
||||
k_out_len = self.k_proj.out_len
|
||||
v_out_len = self.v_proj.out_len
|
||||
qkv_states = linear_q4_0.mm_xetla(hidden_states,
|
||||
self.qkv_proj_qweight,
|
||||
self.q_proj.qtype)
|
||||
qkv_states = xe_linear.mm_xetla(hidden_states,
|
||||
self.qkv_proj_qweight,
|
||||
self.q_proj.qtype)
|
||||
query_states = qkv_states[:, :, :q_out_len]
|
||||
key_states = qkv_states[:, :, q_out_len:q_out_len + k_out_len]
|
||||
value_states = qkv_states[:, :, q_out_len + k_out_len:]
|
||||
|
|
@ -1033,8 +1032,8 @@ def mistral_attention_forward_4_36_original(
|
|||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
elif use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||
# new fp16 sdp doesn't require repeat_kv
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
|
||||
attn_output = attn_output.view(query_states.shape)
|
||||
attn_weights = None
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
|
|
|
|||
|
|
@ -105,8 +105,8 @@ def mixtral_moeblock_forward(self,
|
|||
elif bs < 256 and hidden_states.device.type == 'xpu':
|
||||
final_hidden_states = torch.zeros((batch_size * sequence_length, hidden_dim),
|
||||
dtype=hidden_states.dtype, device=hidden_states.device)
|
||||
import linear_q4_0
|
||||
indexes = linear_q4_0.get_moe_indexes(selected_experts.to(torch.int32).cpu(), 8)
|
||||
import xe_linear
|
||||
indexes = xe_linear.get_moe_indexes(selected_experts.to(torch.int32).cpu(), 8)
|
||||
for expert_idx in range(self.num_experts):
|
||||
expert_layer = self.experts[expert_idx]
|
||||
idx_list = indexes[0][expert_idx]
|
||||
|
|
@ -184,18 +184,18 @@ def mixtral_attention_forward(
|
|||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
import linear_q4_0
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
cache_k, cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
kv_seq_len += 1
|
||||
# update past_key_value's seem_tokens and kv caches.
|
||||
if self.layer_idx == 0:
|
||||
|
|
@ -209,8 +209,8 @@ def mixtral_attention_forward(
|
|||
# cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
# cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
# kv_seq_len = cache_k.shape[-2]
|
||||
# import linear_q4_0
|
||||
# query_states, key_states = linear_q4_0.forward_qk(hidden_states,
|
||||
# import xe_linear
|
||||
# query_states, key_states = xe_linear.forward_qk(hidden_states,
|
||||
# self.q_proj.weight,
|
||||
# self.k_proj.weight,
|
||||
# position_ids,
|
||||
|
|
@ -333,8 +333,8 @@ def mixtral_attention_forward(
|
|||
is_causal=True)
|
||||
attn_weights = None
|
||||
elif use_sdp(query_states.shape[2], key_states.shape[2], self.head_dim, query_states):
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
|
||||
attn_output = attn_output.view(query_states.shape)
|
||||
attn_weights = None
|
||||
else:
|
||||
|
|
@ -389,8 +389,8 @@ def mixtral_mlp_forward(
|
|||
) -> torch.Tensor:
|
||||
qtype = getattr(self.w1, "qtype", None)
|
||||
if mlp_fusion_check(x, qtype, self.training) and not self.w1.enable_xetla:
|
||||
import linear_q4_0
|
||||
return self.w2(linear_q4_0.mlp_forward_xpu(
|
||||
import xe_linear
|
||||
return self.w2(xe_linear.mlp_forward_xpu(
|
||||
x, self.w1.weight.data, self.w3.weight.data,
|
||||
x.shape[0], x.shape[1], self.w1.out_len,
|
||||
SILU, qtype,
|
||||
|
|
|
|||
|
|
@ -108,17 +108,17 @@ def attention_forward(
|
|||
|
||||
# IPEX-LLM OPT: fuse rope
|
||||
if should_use_fuse_rope(hidden_states, position_ids, self.training):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
if self.rotary_emb.__class__.__name__ == "Phi3RotaryEmbedding": # 4k
|
||||
linear_q4_0.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
|
||||
query_states, key_states)
|
||||
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
|
||||
query_states, key_states)
|
||||
else: # 128k
|
||||
if kv_seq_len > self.rotary_emb.original_max_position_embeddings:
|
||||
linear_q4_0.rotary_half_inplaced(self.rotary_emb.long_inv_freq, position_ids,
|
||||
query_states, key_states)
|
||||
xe_addons.rotary_half_inplaced(self.rotary_emb.long_inv_freq,
|
||||
position_ids, query_states, key_states)
|
||||
else:
|
||||
linear_q4_0.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
|
||||
query_states, key_states)
|
||||
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq,
|
||||
position_ids, query_states, key_states)
|
||||
# todo: fuse scaling_factor
|
||||
query_states *= self.rotary_emb.scaling_factor
|
||||
key_states *= self.rotary_emb.scaling_factor
|
||||
|
|
@ -132,18 +132,19 @@ def attention_forward(
|
|||
self.layer_idx, None)
|
||||
|
||||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
if isinstance(past_key_value, DynamicFp8Cache):
|
||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
else:
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
if isinstance(past_key_value, DynamicFp8Cache):
|
||||
attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
|
||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states)
|
||||
else:
|
||||
attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
|
||||
attn_output = xe_addons.sdp_causal(query_states, key_states, value_states)
|
||||
else:
|
||||
if isinstance(past_key_value, DynamicFp8Cache):
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
|
|
@ -204,8 +205,8 @@ def mlp_forward(
|
|||
qtype = getattr(self.gate_proj, "qtype", None)
|
||||
if mlp_fusion_check(x_2d, qtype, self.training):
|
||||
x_2d = x_2d.contiguous()
|
||||
import linear_q4_0
|
||||
return self.down_proj(linear_q4_0.mlp_forward_xpu(
|
||||
import xe_linear
|
||||
return self.down_proj(xe_linear.mlp_forward_xpu(
|
||||
x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
|
||||
x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_features,
|
||||
SILU, qtype
|
||||
|
|
@ -293,9 +294,9 @@ def phi3v_model_forward_wrapper(origin_model_forward):
|
|||
|
||||
def phi3_rms_norm_forward(self, hidden_states):
|
||||
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
|
||||
output = linear_q4_0.rms_norm(self.weight, x_2d, self.variance_epsilon)
|
||||
output = xe_addons.rms_norm(self.weight, x_2d, self.variance_epsilon)
|
||||
return output.reshape(hidden_states.shape)
|
||||
|
||||
input_dtype = hidden_states.dtype
|
||||
|
|
|
|||
|
|
@ -92,9 +92,10 @@ def qwen_attention_forward(
|
|||
rotary_pos_emb = rotary_pos_emb_list[0]
|
||||
if use_fuse_rope:
|
||||
rot_dim = rotary_pos_emb[0].size(-1)
|
||||
import linear_q4_0
|
||||
linear_q4_0.rotary_half_inplaced(inv_freq, position_ids,
|
||||
query_states[..., :rot_dim], key_states[..., :rot_dim])
|
||||
import xe_addons
|
||||
xe_addons.rotary_half_inplaced(inv_freq, position_ids,
|
||||
query_states[..., :rot_dim],
|
||||
key_states[..., :rot_dim])
|
||||
else:
|
||||
rotary_pos_emb = [i[:, -q_len:, :, :].transpose(1, 2) for i in rotary_pos_emb]
|
||||
query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb)
|
||||
|
|
@ -124,11 +125,11 @@ def qwen_attention_forward(
|
|||
value_states.to(dtype=torch.float16),
|
||||
is_causal=True).to(hidden_states.dtype)
|
||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
if use_quantize_kv:
|
||||
attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
|
||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states)
|
||||
else:
|
||||
attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
|
||||
attn_output = xe_addons.sdp_causal(query_states, key_states, value_states)
|
||||
else:
|
||||
if q_len > 1:
|
||||
causal_mask = torch.tril(
|
||||
|
|
@ -146,13 +147,13 @@ def qwen_attention_forward(
|
|||
attention_mask = None
|
||||
|
||||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
if use_quantize_kv:
|
||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
else:
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
else:
|
||||
if use_quantize_kv:
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
|
|
@ -221,9 +222,9 @@ def qwen_attention_forward_registered(
|
|||
rotary_pos_emb = rotary_pos_emb_list[0]
|
||||
if use_fuse_rope:
|
||||
rot_dim = rotary_pos_emb[0].size(-1)
|
||||
import linear_q4_0
|
||||
linear_q4_0.rotary_half_inplaced(inv_freq, position_ids,
|
||||
query_states[..., :rot_dim], key_states[..., :rot_dim])
|
||||
import xe_linear
|
||||
xe_linear.rotary_half_inplaced(inv_freq, position_ids,
|
||||
query_states[..., :rot_dim], key_states[..., :rot_dim])
|
||||
else:
|
||||
rotary_pos_emb = [i[:, -q_len:, :, :].transpose(1, 2) for i in rotary_pos_emb]
|
||||
query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb)
|
||||
|
|
@ -253,11 +254,11 @@ def qwen_attention_forward_registered(
|
|||
value_states.to(dtype=torch.float16),
|
||||
is_causal=True).to(hidden_states.dtype)
|
||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
if use_quantize_kv:
|
||||
attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
|
||||
attn_output = xe_linear.sdp_fp8_causal(query_states, key_states, value_states)
|
||||
else:
|
||||
attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
|
||||
attn_output = xe_linear.sdp_causal(query_states, key_states, value_states)
|
||||
else:
|
||||
if q_len > 1:
|
||||
causal_mask = registered_causal_mask[
|
||||
|
|
@ -272,13 +273,13 @@ def qwen_attention_forward_registered(
|
|||
attention_mask = None
|
||||
|
||||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
if use_quantize_kv:
|
||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_output = xe_linear.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
else:
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_output = xe_linear.sdp(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
else:
|
||||
if use_quantize_kv:
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
|
|
@ -310,10 +311,10 @@ def qwen_mlp_forward(self, x: torch.Tensor) -> torch.Tensor:
|
|||
x_2d = x.view(-1, x.shape[-1])
|
||||
qtype = getattr(self.w1, "qtype", None)
|
||||
if mlp_fusion_check(x_2d, qtype, self.training) and not self.w1.enable_xetla:
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
if not x_2d.is_contiguous():
|
||||
x_2d = x_2d.contiguous()
|
||||
return self.c_proj(linear_q4_0.mlp_forward_xpu(
|
||||
return self.c_proj(xe_linear.mlp_forward_xpu(
|
||||
x_2d, self.w2.weight.data, self.w1.weight.data,
|
||||
x_2d.shape[0], x_2d.shape[1], self.w2.out_len,
|
||||
SILU, qtype
|
||||
|
|
|
|||
|
|
@ -310,9 +310,9 @@ def qwen2_attention_forward(
|
|||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
|
||||
if should_use_fuse_rope(hidden_states, position_ids, self.training):
|
||||
import linear_q4_0
|
||||
linear_q4_0.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
|
||||
query_states, key_states)
|
||||
import xe_addons
|
||||
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
|
||||
query_states, key_states)
|
||||
else:
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
|
|
@ -337,18 +337,19 @@ def qwen2_attention_forward(
|
|||
value_states.to(device, dtype=torch.float16),
|
||||
is_causal=True).to(hidden_states.dtype)
|
||||
elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
if isinstance(past_key_value, DynamicFp8Cache):
|
||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
else:
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
if isinstance(past_key_value, DynamicFp8Cache):
|
||||
attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
|
||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states)
|
||||
else:
|
||||
attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
|
||||
attn_output = xe_addons.sdp_causal(query_states, key_states, value_states)
|
||||
else:
|
||||
if isinstance(past_key_value, DynamicFp8Cache):
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
|
|
|
|||
|
|
@ -372,8 +372,8 @@ def qwen2moe_attention_forward_quantized(
|
|||
self.layer_idx, cache_kwargs)
|
||||
if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
|
||||
and not hidden_states.requires_grad:
|
||||
import linear_q4_0
|
||||
attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
|
||||
import xe_addons
|
||||
attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
|
||||
else:
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states,
|
||||
value_states, query_states.dtype)
|
||||
|
|
@ -404,8 +404,8 @@ def qwen2moe_attention_forward_quantized(
|
|||
p=self.attention_dropout, training=self.training)
|
||||
if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
|
||||
and not hidden_states.requires_grad:
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.attn_value_fp8_matmul(attn_weights, value_states)
|
||||
else:
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
|
|
@ -456,12 +456,12 @@ def qwen2moe_attention_forward_origin(
|
|||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
args = [hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight,
|
||||
self.q_proj.bias, self.k_proj.bias, self.v_proj.bias, position_ids, cache_k,
|
||||
cache_v, self.q_proj.weight.qtype, self.v_proj.weight.qtype, kv_seq_len,
|
||||
self.head_dim, self.rotary_emb.base]
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv_bias(*args)
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv_bias(*args)
|
||||
kv_seq_len += 1
|
||||
if self.layer_idx == 0:
|
||||
past_key_value._seen_tokens = kv_seq_len
|
||||
|
|
@ -613,12 +613,12 @@ def qwen2moe_attention_forward_sdpa(
|
|||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
args = [hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight,
|
||||
self.q_proj.bias, self.k_proj.bias, self.v_proj.bias, position_ids, cache_k,
|
||||
cache_v, self.q_proj.weight.qtype, self.v_proj.weight.qtype, kv_seq_len,
|
||||
self.head_dim, self.rotary_emb.base]
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv_bias(*args)
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv_bias(*args)
|
||||
kv_seq_len += 1
|
||||
if self.layer_idx == 0:
|
||||
past_key_value._seen_tokens = kv_seq_len
|
||||
|
|
@ -765,8 +765,8 @@ def qwen2moe_moeblock_forward(self, hidden_states: torch.Tensor):
|
|||
elif bs < 256 and hidden_states.device.type == 'xpu':
|
||||
final_hidden_states = torch.zeros((batch_size * sequence_length, hidden_dim),
|
||||
dtype=hidden_states.dtype, device=hidden_states.device)
|
||||
import linear_q4_0
|
||||
indexes = linear_q4_0.get_moe_indexes(selected_experts.to(torch.int32).cpu(), 60)
|
||||
import xe_linear
|
||||
indexes = xe_linear.get_moe_indexes(selected_experts.to(torch.int32).cpu(), 60)
|
||||
for expert_idx in range(self.num_experts):
|
||||
expert_layer = self.experts[expert_idx]
|
||||
idx_list = indexes[0][expert_idx]
|
||||
|
|
|
|||
|
|
@ -162,8 +162,8 @@ def qwen_attention_forward_vl(
|
|||
|
||||
if not self.training and not hidden_states.requires_grad and \
|
||||
use_sdp(q_len, key.shape[2], self.head_dim, query):
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp(query, key, value, attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp(query, key, value, attention_mask)
|
||||
attn_output = attn_output.view(query.shape)
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
attn_weight = None
|
||||
|
|
|
|||
|
|
@ -56,8 +56,8 @@ def extract_key_value(self, hidden, state=None):
|
|||
self.time_mix_receptance.data,
|
||||
]).to(dtype=hidden.dtype)
|
||||
|
||||
import linear_q4_0
|
||||
mixed_result = linear_q4_0.rwkv_time_shift(hidden, shifted, self.mixed_mix)
|
||||
import xe_linear
|
||||
mixed_result = xe_linear.rwkv_time_shift(hidden, shifted, self.mixed_mix)
|
||||
key, value, receptance = mixed_result
|
||||
|
||||
key = self.key(key)
|
||||
|
|
@ -92,8 +92,8 @@ def rwkv_linear_attention_xpu(
|
|||
time_decay = -torch.exp(time_decay)
|
||||
|
||||
# `num_state`, `den_state`, `max_state` will be modified during this call
|
||||
import linear_q4_0
|
||||
output = linear_q4_0.rwkv_linear_attention_v4(
|
||||
import xe_linear
|
||||
output = xe_linear.rwkv_linear_attention_v4(
|
||||
time_decay,
|
||||
time_first,
|
||||
key,
|
||||
|
|
@ -167,8 +167,8 @@ def rwkv_ffn_forward(
|
|||
self.mixed_mix = torch.cat([self.time_mix_key.data,
|
||||
self.time_mix_receptance.data]).to(dtype=hidden.dtype)
|
||||
|
||||
import linear_q4_0
|
||||
mixed_result = linear_q4_0.rwkv_time_shift(hidden, shifted, self.mixed_mix)
|
||||
import xe_linear
|
||||
mixed_result = xe_linear.rwkv_time_shift(hidden, shifted, self.mixed_mix)
|
||||
key, receptance = mixed_result
|
||||
|
||||
key = torch.square(torch.relu(self.key(key)))
|
||||
|
|
|
|||
|
|
@ -58,8 +58,8 @@ def extract_key_value(self, hidden, state=None):
|
|||
self.time_mix_gate.data,
|
||||
]).to(dtype=hidden.dtype)
|
||||
|
||||
import linear_q4_0
|
||||
mixed_result = linear_q4_0.rwkv_time_shift(hidden, shifted, self.mixed_mix)
|
||||
import xe_linear
|
||||
mixed_result = xe_linear.rwkv_time_shift(hidden, shifted, self.mixed_mix)
|
||||
key, value, receptance, gate = mixed_result
|
||||
|
||||
key = self.key(key)
|
||||
|
|
@ -98,8 +98,8 @@ def rwkv_linear_attention_xpu(
|
|||
time_first = time_first.float()
|
||||
|
||||
# `state` will be updated inplaced during this call
|
||||
import linear_q4_0
|
||||
out = linear_q4_0.rwkv_linear_attention_v5(
|
||||
import xe_linear
|
||||
out = xe_linear.rwkv_linear_attention_v5(
|
||||
time_decay,
|
||||
time_first,
|
||||
receptance,
|
||||
|
|
@ -236,8 +236,8 @@ def rwkv_ffn_forward_wrapper(origin_rwkv_ffn_forward):
|
|||
self.mixed_mix = torch.cat([self.time_mix_key.data,
|
||||
self.time_mix_receptance.data]).to(dtype=hidden.dtype)
|
||||
|
||||
import linear_q4_0
|
||||
mixed_result = linear_q4_0.rwkv_time_shift(hidden, shifted, self.mixed_mix)
|
||||
import xe_linear
|
||||
mixed_result = xe_linear.rwkv_time_shift(hidden, shifted, self.mixed_mix)
|
||||
key, receptance = mixed_result
|
||||
|
||||
key = torch.square(torch.relu(self.key(key)))
|
||||
|
|
|
|||
|
|
@ -267,8 +267,9 @@ def stablelm_attention_forward_original(
|
|||
attn_weights = None
|
||||
elif not self.training and not hidden_states.requires_grad and \
|
||||
use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_output = attn_output.view(query_states.shape)
|
||||
attn_weights = None
|
||||
else:
|
||||
|
|
@ -420,8 +421,8 @@ def stablelm_attention_forward_quantized(
|
|||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
|
||||
import xe_addons
|
||||
attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
|
||||
|
||||
attn_weights = attn_weights / math.sqrt(self.head_dim)
|
||||
|
||||
|
|
@ -444,8 +445,8 @@ def stablelm_attention_forward_quantized(
|
|||
if query_states.size(2) != 1 or query_states.device.type != 'xpu':
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.attn_value_fp8_matmul(attn_weights, value_states)
|
||||
|
||||
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
|
||||
invalidInputError(attn_output.size() == attn_output_size,
|
||||
|
|
|
|||
|
|
@ -135,8 +135,9 @@ def attention_forward(
|
|||
self.layer_idx, None)
|
||||
|
||||
if use_quantize_kv and q_len == 1:
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states, attention_mask)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_weights = None
|
||||
else:
|
||||
if use_quantize_kv:
|
||||
|
|
|
|||
|
|
@ -20,7 +20,8 @@ import warnings
|
|||
from ipex_llm.utils.common import invalidInputError
|
||||
from ipex_llm.ggml.quantize import ggml_tensor_qtype
|
||||
from ipex_llm.transformers.utils import get_ipex_version, get_xpu_device_type
|
||||
from ipex_llm.transformers.low_bit_linear import SYM_INT4, SYM_INT8, FP8E5, IQ2_XXS, FP4, FP8E4, FP6
|
||||
from ipex_llm.transformers.low_bit_linear import SYM_INT4, SYM_INT8, FP8E5, IQ2_XXS, FP4, FP8E4,\
|
||||
FP6, ASYM_INT4
|
||||
from ipex_llm.transformers.convert import is_deepspeed_available
|
||||
|
||||
FP8_KV_ALLOC_LENGTH = 512
|
||||
|
|
@ -128,10 +129,10 @@ def append_fp8_kv_cache(k_cache, v_cache, key, value):
|
|||
new_k_cache = k_cache.as_strided(new_size, k_cache.stride(), storage_offset=0)
|
||||
new_v_cache = v_cache.as_strided(new_size, v_cache.stride(), storage_offset=0)
|
||||
|
||||
import linear_q4_0
|
||||
linear_q4_0.quantize_key_value(key, value,
|
||||
new_k_cache[:, :, cur_length:new_length, :],
|
||||
new_v_cache[:, :, cur_length:new_length, :])
|
||||
import xe_addons
|
||||
xe_addons.quantize_key_value(key, value,
|
||||
new_k_cache[:, :, cur_length:new_length, :],
|
||||
new_v_cache[:, :, cur_length:new_length, :])
|
||||
|
||||
return new_k_cache, new_v_cache
|
||||
|
||||
|
|
@ -140,8 +141,8 @@ def restore_fp8_kv_cache(k_cache, v_cache, dtype):
|
|||
key_states = torch.empty(k_cache.shape, device=k_cache.device, dtype=dtype)
|
||||
value_states = torch.empty(v_cache.shape, device=v_cache.device, dtype=dtype)
|
||||
|
||||
import linear_q4_0
|
||||
linear_q4_0.dequantize_key_value(k_cache, v_cache, key_states, value_states)
|
||||
import xe_addons
|
||||
xe_addons.dequantize_key_value(k_cache, v_cache, key_states, value_states)
|
||||
|
||||
return key_states, value_states
|
||||
|
||||
|
|
@ -211,13 +212,13 @@ def apply_rotary_pos_emb_no_cache_xpu(q, k, position_ids, model_family, rope_the
|
|||
if q.device.type != "xpu":
|
||||
invalidInputError(False,
|
||||
f"only xpu is supported in this function")
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
q_embed = torch.empty(q.shape, dtype=q.dtype, device=q.device)
|
||||
k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device)
|
||||
if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral",
|
||||
"mixtral"]:
|
||||
linear_q4_0.apply_rotary_embedding_half_q_and_k(q, k, position_ids,
|
||||
q_embed, k_embed, rope_theta)
|
||||
xe_addons.apply_rotary_embedding_half_q_and_k(q, k, position_ids,
|
||||
q_embed, k_embed, rope_theta)
|
||||
return q_embed, k_embed
|
||||
else:
|
||||
invalidInputError(False,
|
||||
|
|
@ -228,11 +229,12 @@ def apply_rotary_pos_emb_cache_freq_xpu(q, k, sin, cos, model_family, position_i
|
|||
if q.device.type != "xpu":
|
||||
invalidInputError(False,
|
||||
f"only xpu is supported in this function")
|
||||
import linear_q4_0
|
||||
import xe_addons
|
||||
q_embed = torch.empty(q.shape, dtype=q.dtype, device=q.device)
|
||||
k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device)
|
||||
if model_family in ["qwen", "mixtral"]:
|
||||
linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
|
||||
xe_addons.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos,
|
||||
q_embed, k_embed)
|
||||
elif model_family in ["qwen2", "yuan", "stablelm", "qwen2_moe", "internlm"]:
|
||||
cos = cos.to(q.dtype)
|
||||
sin = sin.to(q.dtype)
|
||||
|
|
@ -240,11 +242,13 @@ def apply_rotary_pos_emb_cache_freq_xpu(q, k, sin, cos, model_family, position_i
|
|||
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
|
||||
xe_addons.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos,
|
||||
q_embed, k_embed)
|
||||
elif model_family in ["gemma", "phi3"]:
|
||||
cos = cos.unsqueeze(1)
|
||||
sin = sin.unsqueeze(1)
|
||||
linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
|
||||
xe_addons.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos,
|
||||
q_embed, k_embed)
|
||||
else:
|
||||
invalidInputError(False,
|
||||
f"{model_family} is not supported.")
|
||||
|
|
|
|||
|
|
@ -97,10 +97,10 @@ def yuan_mlp_forward(
|
|||
bsz, hidden_size = x_2d.shape
|
||||
qtype = getattr(self.up_proj, "qtype", None)
|
||||
if mlp_fusion_check(x_2d, qtype, self.training):
|
||||
import linear_q4_0
|
||||
import xe_linear
|
||||
if not x_2d.is_contiguous():
|
||||
x_2d = x_2d.contiguous()
|
||||
out = self.down_proj(linear_q4_0.mlp_forward_xpu(
|
||||
out = self.down_proj(xe_linear.mlp_forward_xpu(
|
||||
x_2d, self.up_proj.weight.data, self.gate_proj.weight.data,
|
||||
x_2d.shape[0], x_2d.shape[1], self.up_proj.out_len,
|
||||
SILU, qtype
|
||||
|
|
@ -268,8 +268,8 @@ def yuan_attention_forward_quantized(
|
|||
query_states.dtype)
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
|
||||
import xe_addons
|
||||
attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
|
||||
|
||||
attn_weights = attn_weights / math.sqrt(self.head_dim)
|
||||
|
||||
|
|
@ -292,8 +292,8 @@ def yuan_attention_forward_quantized(
|
|||
if query_states.size(2) != 1 or device.type != 'xpu':
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
else:
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states)
|
||||
import xe_addons
|
||||
attn_output = xe_addons.attn_value_fp8_matmul(attn_weights, value_states)
|
||||
|
||||
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
|
||||
"`attn_output` should be of size "
|
||||
|
|
|
|||
Loading…
Reference in a new issue