Divide core-xe packages (#11131)
* temp * add batch * fix style * update package name * fix style * add workflow * use temp version to run uts * trigger performance test * trigger win igpu perf * revert workflow & setup
This commit is contained in:
		
							parent
							
								
									c9168b85b7
								
							
						
					
					
						commit
						b6b70d1ba0
					
				
					 28 changed files with 427 additions and 373 deletions
				
			
		
							
								
								
									
										8
									
								
								.github/actions/llm/setup-llm-env/action.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										8
									
								
								.github/actions/llm/setup-llm-env/action.yml
									
									
									
									
										vendored
									
									
								
							| 
						 | 
					@ -13,12 +13,20 @@ runs:
 | 
				
			||||||
      run: |
 | 
					      run: |
 | 
				
			||||||
        # make sure we install the latest version for bigdl-core-xe related packages
 | 
					        # make sure we install the latest version for bigdl-core-xe related packages
 | 
				
			||||||
        pip uninstall bigdl-core-xe -y || true
 | 
					        pip uninstall bigdl-core-xe -y || true
 | 
				
			||||||
 | 
					        pip uninstall bigdl-core-xe-batch -y || true
 | 
				
			||||||
 | 
					        pip uninstall bigdl-core-xe-addons -y || true
 | 
				
			||||||
        pip uninstall bigdl-core-xe-esimd -y || true
 | 
					        pip uninstall bigdl-core-xe-esimd -y || true
 | 
				
			||||||
        pip uninstall bigdl-core-xe-21 -y || true
 | 
					        pip uninstall bigdl-core-xe-21 -y || true
 | 
				
			||||||
 | 
					        pip uninstall bigdl-core-xe-batch-21 -y || true
 | 
				
			||||||
 | 
					        pip uninstall bigdl-core-xe-addons-21 -y || true
 | 
				
			||||||
        pip uninstall bigdl-core-xe-esimd-21 -y || true
 | 
					        pip uninstall bigdl-core-xe-esimd-21 -y || true
 | 
				
			||||||
        sed -i 's/"bigdl-core-xe==" + CORE_XE_VERSION + "/"bigdl-core-xe/g' python/llm/setup.py
 | 
					        sed -i 's/"bigdl-core-xe==" + CORE_XE_VERSION + "/"bigdl-core-xe/g' python/llm/setup.py
 | 
				
			||||||
 | 
					        sed -i 's/"bigdl-core-xe-batch==" + CORE_XE_VERSION + "/"bigdl-core-xe-batch/g' python/llm/setup.py
 | 
				
			||||||
 | 
					        sed -i 's/"bigdl-core-xe-addons==" + CORE_XE_VERSION + "/"bigdl-core-xe-addons/g' python/llm/setup.py
 | 
				
			||||||
        sed -i 's/"bigdl-core-xe-esimd==" + CORE_XE_VERSION + "/"bigdl-core-xe-esimd/g' python/llm/setup.py
 | 
					        sed -i 's/"bigdl-core-xe-esimd==" + CORE_XE_VERSION + "/"bigdl-core-xe-esimd/g' python/llm/setup.py
 | 
				
			||||||
        sed -i 's/"bigdl-core-xe-21==" + CORE_XE_VERSION/"bigdl-core-xe-21"/g' python/llm/setup.py
 | 
					        sed -i 's/"bigdl-core-xe-21==" + CORE_XE_VERSION/"bigdl-core-xe-21"/g' python/llm/setup.py
 | 
				
			||||||
 | 
					        sed -i 's/"bigdl-core-xe-batch-21==" + CORE_XE_VERSION/"bigdl-core-xe-batch-21"/g' python/llm/setup.py
 | 
				
			||||||
 | 
					        sed -i 's/"bigdl-core-xe-addons-21==" + CORE_XE_VERSION/"bigdl-core-xe-addons-21"/g' python/llm/setup.py
 | 
				
			||||||
        sed -i 's/"bigdl-core-xe-esimd-21==" + CORE_XE_VERSION/"bigdl-core-xe-esimd-21"/g' python/llm/setup.py
 | 
					        sed -i 's/"bigdl-core-xe-esimd-21==" + CORE_XE_VERSION/"bigdl-core-xe-esimd-21"/g' python/llm/setup.py
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        pip install requests
 | 
					        pip install requests
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										2
									
								
								.github/workflows/llm_performance_tests.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/workflows/llm_performance_tests.yml
									
									
									
									
										vendored
									
									
								
							| 
						 | 
					@ -312,6 +312,8 @@ jobs:
 | 
				
			||||||
      #   shell: bash
 | 
					      #   shell: bash
 | 
				
			||||||
      #   run: |
 | 
					      #   run: |
 | 
				
			||||||
      #     sed -i 's/"bigdl-core-xe-21==" + CORE_XE_VERSION/"bigdl-core-xe-21"/g' python/llm/setup.py
 | 
					      #     sed -i 's/"bigdl-core-xe-21==" + CORE_XE_VERSION/"bigdl-core-xe-21"/g' python/llm/setup.py
 | 
				
			||||||
 | 
					      #     sed -i 's/"bigdl-core-xe-batch-21==" + CORE_XE_VERSION/"bigdl-core-xe-batch-21"/g' python/llm/setup.py
 | 
				
			||||||
 | 
					      #     sed -i 's/"bigdl-core-xe-addons-21==" + CORE_XE_VERSION/"bigdl-core-xe-addons-21"/g' python/llm/setup.py
 | 
				
			||||||
      #     sed -i 's/"bigdl-core-xe-esimd-21==" + CORE_XE_VERSION/"bigdl-core-xe-esimd-21"/g' python/llm/setup.py
 | 
					      #     sed -i 's/"bigdl-core-xe-esimd-21==" + CORE_XE_VERSION/"bigdl-core-xe-esimd-21"/g' python/llm/setup.py
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      # - name: Install ipex-llm and other related packages (install from source)
 | 
					      # - name: Install ipex-llm and other related packages (install from source)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -298,6 +298,8 @@ def setup_package():
 | 
				
			||||||
                        "torchvision==0.16.0a0",
 | 
					                        "torchvision==0.16.0a0",
 | 
				
			||||||
                        "intel_extension_for_pytorch==2.1.10+xpu",
 | 
					                        "intel_extension_for_pytorch==2.1.10+xpu",
 | 
				
			||||||
                        "bigdl-core-xe-21==" + CORE_XE_VERSION,
 | 
					                        "bigdl-core-xe-21==" + CORE_XE_VERSION,
 | 
				
			||||||
 | 
					                        "bigdl-core-xe-batch-21==" + CORE_XE_VERSION,
 | 
				
			||||||
 | 
					                        "bigdl-core-xe-addons-21==" + CORE_XE_VERSION,
 | 
				
			||||||
                        "bigdl-core-xe-esimd-21==" + CORE_XE_VERSION]
 | 
					                        "bigdl-core-xe-esimd-21==" + CORE_XE_VERSION]
 | 
				
			||||||
    xpu_21_requires += oneapi_2024_0_requires
 | 
					    xpu_21_requires += oneapi_2024_0_requires
 | 
				
			||||||
    # default to ipex 2.1 for linux and windows
 | 
					    # default to ipex 2.1 for linux and windows
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -16,7 +16,7 @@
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
import linear_q4_0
 | 
					import xe_linear
 | 
				
			||||||
torch_bmm_old_ = torch.bmm
 | 
					torch_bmm_old_ = torch.bmm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -30,7 +30,7 @@ def torch_bmm(a, b):
 | 
				
			||||||
    if a.size(1) == 1:
 | 
					    if a.size(1) == 1:
 | 
				
			||||||
        torch_bmm_old_(a, b, out=C)
 | 
					        torch_bmm_old_(a, b, out=C)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        linear_q4_0.bmm(a.contiguous(), b.contiguous(), C)
 | 
					        xe_linear.bmm(a.contiguous(), b.contiguous(), C)
 | 
				
			||||||
    return C
 | 
					    return C
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -104,11 +104,11 @@ class LowBitEmbedding(torch.nn.Embedding):
 | 
				
			||||||
                          "`LowBitEmbedding` only supports GPU now.")
 | 
					                          "`LowBitEmbedding` only supports GPU now.")
 | 
				
			||||||
        try:
 | 
					        try:
 | 
				
			||||||
            import intel_extension_for_pytorch
 | 
					            import intel_extension_for_pytorch
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_linear
 | 
				
			||||||
        except ModuleNotFoundError:
 | 
					        except ModuleNotFoundError:
 | 
				
			||||||
            invalidInputError(False,
 | 
					            invalidInputError(False,
 | 
				
			||||||
                              "Please `pip install bigdl_core_xe` first.")
 | 
					                              "Please `pip install bigdl_core_xe` first.")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        result = linear_q4_0.dequantize_rows(x.contiguous(), self.weight.data,
 | 
					        result = xe_linear.dequantize_rows(x.contiguous(), self.weight.data,
 | 
				
			||||||
                                           self.weight.qtype, self.embedding_dim)
 | 
					                                           self.weight.qtype, self.embedding_dim)
 | 
				
			||||||
        return result.to(self.torch_dtype)
 | 
					        return result.to(self.torch_dtype)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -42,9 +42,9 @@ class FastRopeEmbedding(torch.autograd.Function):
 | 
				
			||||||
    @staticmethod
 | 
					    @staticmethod
 | 
				
			||||||
    @custom_fwd
 | 
					    @custom_fwd
 | 
				
			||||||
    def forward(ctx, x, position_ids):
 | 
					    def forward(ctx, x, position_ids):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        x_embed = torch.empty(x.shape, dtype=x.dtype, device=x.device)
 | 
					        x_embed = torch.empty(x.shape, dtype=x.dtype, device=x.device)
 | 
				
			||||||
        linear_q4_0.apply_rotary_embedding_half_q_or_k(x, position_ids,
 | 
					        xe_addons.apply_rotary_embedding_half_q_or_k(x, position_ids,
 | 
				
			||||||
                                                     x_embed, False)
 | 
					                                                     x_embed, False)
 | 
				
			||||||
        ctx.save_for_backward(position_ids)
 | 
					        ctx.save_for_backward(position_ids)
 | 
				
			||||||
        return x_embed
 | 
					        return x_embed
 | 
				
			||||||
| 
						 | 
					@ -52,13 +52,13 @@ class FastRopeEmbedding(torch.autograd.Function):
 | 
				
			||||||
    @staticmethod
 | 
					    @staticmethod
 | 
				
			||||||
    @custom_bwd
 | 
					    @custom_bwd
 | 
				
			||||||
    def backward(ctx, grad_output):
 | 
					    def backward(ctx, grad_output):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        # LOG.info(f"backward, grad_output: {grad_output}")
 | 
					        # LOG.info(f"backward, grad_output: {grad_output}")
 | 
				
			||||||
        position_ids, = ctx.saved_tensors
 | 
					        position_ids, = ctx.saved_tensors
 | 
				
			||||||
        dx = torch.empty(grad_output.shape,
 | 
					        dx = torch.empty(grad_output.shape,
 | 
				
			||||||
                         dtype=grad_output.dtype,
 | 
					                         dtype=grad_output.dtype,
 | 
				
			||||||
                         device=grad_output.device)
 | 
					                         device=grad_output.device)
 | 
				
			||||||
        linear_q4_0.apply_rotary_embedding_half_q_or_k(grad_output,
 | 
					        xe_addons.apply_rotary_embedding_half_q_or_k(grad_output,
 | 
				
			||||||
                                                     position_ids,
 | 
					                                                     position_ids,
 | 
				
			||||||
                                                     dx,
 | 
					                                                     dx,
 | 
				
			||||||
                                                     True)
 | 
					                                                     True)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -320,6 +320,26 @@ def reshape_lm_head_input(x):
 | 
				
			||||||
    return x
 | 
					    return x
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def use_batch_forward(x: torch.Tensor, qtype: int, output_len: int):
 | 
				
			||||||
 | 
					    device = get_xpu_device_type(x)
 | 
				
			||||||
 | 
					    batch_size = x.shape[0]
 | 
				
			||||||
 | 
					    hard_condition = (
 | 
				
			||||||
 | 
					        x.dtype in [torch.float, torch.half]
 | 
				
			||||||
 | 
					        and x.shape[1] % 256 == 0
 | 
				
			||||||
 | 
					        and output_len % 32 == 0
 | 
				
			||||||
 | 
					        and device in ["arc", "flex", "pvc", "mtl"]
 | 
				
			||||||
 | 
					        and qtype in [SYM_INT4, ASYM_INT4, SYM_INT8, FP4,
 | 
				
			||||||
 | 
					                      FP8E5, FP6]
 | 
				
			||||||
 | 
					        and batch_size <= 64
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    if hard_condition:
 | 
				
			||||||
 | 
					        return (
 | 
				
			||||||
 | 
					            batch_size > 1
 | 
				
			||||||
 | 
					            or (device in ["arc", "flex"] and qtype in [SYM_INT8, FP4])
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					    return False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Rename to FP4Params to trigger initializing
 | 
					# Rename to FP4Params to trigger initializing
 | 
				
			||||||
# the params layer with all parameters on the CPU
 | 
					# the params layer with all parameters on the CPU
 | 
				
			||||||
# https://github.com/huggingface/accelerate/blob/main/src/accelerate/utils/modeling.py#L333
 | 
					# https://github.com/huggingface/accelerate/blob/main/src/accelerate/utils/modeling.py#L333
 | 
				
			||||||
| 
						 | 
					@ -524,8 +544,8 @@ class MatMulLowBit(torch.autograd.Function):
 | 
				
			||||||
    @custom_fwd
 | 
					    @custom_fwd
 | 
				
			||||||
    def forward(ctx, A, weight, input_seq_size):
 | 
					    def forward(ctx, A, weight, input_seq_size):
 | 
				
			||||||
        ctx.is_empty = False
 | 
					        ctx.is_empty = False
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        result = linear_q4_0.forward_new(A, weight.data, weight.qtype, input_seq_size)
 | 
					        result = xe_linear.forward_new(A, weight.data, weight.qtype, input_seq_size)
 | 
				
			||||||
        if any(ctx.needs_input_grad[:2]):
 | 
					        if any(ctx.needs_input_grad[:2]):
 | 
				
			||||||
            ctx.tensors = (A, weight)
 | 
					            ctx.tensors = (A, weight)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
| 
						 | 
					@ -535,7 +555,7 @@ class MatMulLowBit(torch.autograd.Function):
 | 
				
			||||||
    @staticmethod
 | 
					    @staticmethod
 | 
				
			||||||
    @custom_bwd
 | 
					    @custom_bwd
 | 
				
			||||||
    def backward(ctx, grad_output):
 | 
					    def backward(ctx, grad_output):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        if ctx.is_empty:
 | 
					        if ctx.is_empty:
 | 
				
			||||||
            bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias)
 | 
					            bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias)
 | 
				
			||||||
            return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
 | 
					            return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
 | 
				
			||||||
| 
						 | 
					@ -545,7 +565,7 @@ class MatMulLowBit(torch.autograd.Function):
 | 
				
			||||||
        if req_gradA:
 | 
					        if req_gradA:
 | 
				
			||||||
            if torch.xpu.is_autocast_xpu_enabled():
 | 
					            if torch.xpu.is_autocast_xpu_enabled():
 | 
				
			||||||
                grad_output = grad_output.to(torch.xpu.get_autocast_xpu_dtype())
 | 
					                grad_output = grad_output.to(torch.xpu.get_autocast_xpu_dtype())
 | 
				
			||||||
            dequant_weight = linear_q4_0.dequant(A, weight.data, weight.qtype)
 | 
					            dequant_weight = xe_linear.dequant(A, weight.data, weight.qtype)
 | 
				
			||||||
            grad_A = torch.matmul(grad_output, dequant_weight.reshape(weight._shape))
 | 
					            grad_A = torch.matmul(grad_output, dequant_weight.reshape(weight._shape))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        return grad_A, grad_weight, None
 | 
					        return grad_A, grad_weight, None
 | 
				
			||||||
| 
						 | 
					@ -659,7 +679,7 @@ class LowBitLinear(nn.Linear):
 | 
				
			||||||
            # GPU logic
 | 
					            # GPU logic
 | 
				
			||||||
            try:
 | 
					            try:
 | 
				
			||||||
                import intel_extension_for_pytorch
 | 
					                import intel_extension_for_pytorch
 | 
				
			||||||
                import linear_q4_0
 | 
					                import xe_linear
 | 
				
			||||||
                from ipex_llm.transformers.models.utils import use_xmx
 | 
					                from ipex_llm.transformers.models.utils import use_xmx
 | 
				
			||||||
            except ModuleNotFoundError:
 | 
					            except ModuleNotFoundError:
 | 
				
			||||||
                invalidInputError(False,
 | 
					                invalidInputError(False,
 | 
				
			||||||
| 
						 | 
					@ -678,12 +698,12 @@ class LowBitLinear(nn.Linear):
 | 
				
			||||||
                if x_2d.requires_grad:
 | 
					                if x_2d.requires_grad:
 | 
				
			||||||
                    result = MatMulLowBit.apply(x_2d, self.weight, input_seq_size)
 | 
					                    result = MatMulLowBit.apply(x_2d, self.weight, input_seq_size)
 | 
				
			||||||
                else:
 | 
					                else:
 | 
				
			||||||
                    result = linear_q4_0.forward_new(x_2d, self.weight.data,
 | 
					                    result = xe_linear.forward_new(x_2d, self.weight.data,
 | 
				
			||||||
                                                   self.weight.qtype,
 | 
					                                                   self.weight.qtype,
 | 
				
			||||||
                                                   input_seq_size)
 | 
					                                                   input_seq_size)
 | 
				
			||||||
            elif self.enable_xetla:
 | 
					            elif self.enable_xetla:
 | 
				
			||||||
                x_2d = x_2d.half()
 | 
					                x_2d = x_2d.half()
 | 
				
			||||||
                result = linear_q4_0.mm_xetla(x_2d, self.weight.data, self.qtype)
 | 
					                result = xe_linear.mm_xetla(x_2d, self.weight.data, self.qtype)
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                # inference path
 | 
					                # inference path
 | 
				
			||||||
                # current workaround to reduce first token latency of fp32 input
 | 
					                # current workaround to reduce first token latency of fp32 input
 | 
				
			||||||
| 
						 | 
					@ -696,11 +716,23 @@ class LowBitLinear(nn.Linear):
 | 
				
			||||||
                if self.conver_to_half and x_2d.shape[0] > 1 and x_2d.dtype == torch.float32 and \
 | 
					                if self.conver_to_half and x_2d.shape[0] > 1 and x_2d.dtype == torch.float32 and \
 | 
				
			||||||
                        not use_xmx(x_2d, self.weight.qtype):
 | 
					                        not use_xmx(x_2d, self.weight.qtype):
 | 
				
			||||||
                    x_2d = x_2d.half()
 | 
					                    x_2d = x_2d.half()
 | 
				
			||||||
                    result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype,
 | 
					                    if use_batch_forward(x_2d, self.weight.qtype, self.out_len):
 | 
				
			||||||
 | 
					                        import xe_batch
 | 
				
			||||||
 | 
					                        result = xe_batch.batch_forward(x_2d, self.weight.data,
 | 
				
			||||||
 | 
					                                                        self.weight.qtype,
 | 
				
			||||||
 | 
					                                                        input_seq_size)
 | 
				
			||||||
 | 
					                    else:
 | 
				
			||||||
 | 
					                        result = xe_linear.forward_new(x_2d, self.weight.data, self.weight.qtype,
 | 
				
			||||||
                                                       input_seq_size)
 | 
					                                                       input_seq_size)
 | 
				
			||||||
                    result = result.to(x.dtype)
 | 
					                    result = result.to(x.dtype)
 | 
				
			||||||
                else:
 | 
					                else:
 | 
				
			||||||
                    result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype,
 | 
					                    if use_batch_forward(x_2d, self.weight.qtype, self.out_len):
 | 
				
			||||||
 | 
					                        import xe_batch
 | 
				
			||||||
 | 
					                        result = xe_batch.batch_forward(x_2d, self.weight.data,
 | 
				
			||||||
 | 
					                                                        self.weight.qtype,
 | 
				
			||||||
 | 
					                                                        input_seq_size)
 | 
				
			||||||
 | 
					                    else:
 | 
				
			||||||
 | 
					                        result = xe_linear.forward_new(x_2d, self.weight.data, self.weight.qtype,
 | 
				
			||||||
                                                       input_seq_size)
 | 
					                                                       input_seq_size)
 | 
				
			||||||
                if do_empty_cache:
 | 
					                if do_empty_cache:
 | 
				
			||||||
                    torch.xpu.empty_cache()
 | 
					                    torch.xpu.empty_cache()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -168,8 +168,8 @@ def baichuan_attention_forward_7b_quantized(
 | 
				
			||||||
                                                 dtype=torch.float32).to(query_states.dtype)
 | 
					                                                 dtype=torch.float32).to(query_states.dtype)
 | 
				
			||||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
					            attn_output = torch.matmul(attn_weights, value_states)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_addons
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
					            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
				
			||||||
                                            attention_mask)
 | 
					                                            attention_mask)
 | 
				
			||||||
            attn_weights = None
 | 
					            attn_weights = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -277,8 +277,9 @@ def baichuan_attention_forward_7b_origin(
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    elif not self.training and not hidden_states.requires_grad and \
 | 
					    elif not self.training and not hidden_states.requires_grad and \
 | 
				
			||||||
            use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
					            use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
 | 
					        attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
				
			||||||
 | 
					                                    attention_mask)
 | 
				
			||||||
        attn_output = attn_output.view(query_states.shape)
 | 
					        attn_output = attn_output.view(query_states.shape)
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
| 
						 | 
					@ -400,8 +401,8 @@ def baichuan_attention_forward_13b_quantized(
 | 
				
			||||||
                                                            query_states.dtype)
 | 
					                                                            query_states.dtype)
 | 
				
			||||||
            attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
 | 
					            attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_addons
 | 
				
			||||||
            attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
 | 
					            attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
					        attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -419,8 +420,9 @@ def baichuan_attention_forward_13b_quantized(
 | 
				
			||||||
        if query_states.size(2) != 1 or query_states.device.type != 'xpu':
 | 
					        if query_states.size(2) != 1 or query_states.device.type != 'xpu':
 | 
				
			||||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
					            attn_output = torch.matmul(attn_weights, value_states)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_addons
 | 
				
			||||||
            attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states)
 | 
					            attn_output = xe_addons.attn_value_fp8_matmul(attn_weights,
 | 
				
			||||||
 | 
					                                                          value_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    attn_output = attn_output.transpose(1, 2)
 | 
					    attn_output = attn_output.transpose(1, 2)
 | 
				
			||||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
					    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -41,9 +41,9 @@ def pre_compute_inv_freq(module: torch.nn.Module):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def baichuan_13b_rms_norm_forward(self, hidden_states):
 | 
					def baichuan_13b_rms_norm_forward(self, hidden_states):
 | 
				
			||||||
    if hidden_states.device.type == "xpu" and not (self.training or hidden_states.requires_grad):
 | 
					    if hidden_states.device.type == "xpu" and not (self.training or hidden_states.requires_grad):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
					        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
				
			||||||
        output = linear_q4_0.rms_norm(self.weight, x_2d, self.epsilon)
 | 
					        output = xe_addons.rms_norm(self.weight, x_2d, self.epsilon)
 | 
				
			||||||
        return output.reshape(hidden_states.shape)
 | 
					        return output.reshape(hidden_states.shape)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    input_dtype = hidden_states.dtype
 | 
					    input_dtype = hidden_states.dtype
 | 
				
			||||||
| 
						 | 
					@ -60,10 +60,10 @@ def baichuan_mlp_forward(
 | 
				
			||||||
    x_2d = x.view(-1, x.shape[-1])
 | 
					    x_2d = x.view(-1, x.shape[-1])
 | 
				
			||||||
    qtype = getattr(self.gate_proj, "qtype", None)
 | 
					    qtype = getattr(self.gate_proj, "qtype", None)
 | 
				
			||||||
    if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
 | 
					    if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        if not x_2d.is_contiguous():
 | 
					        if not x_2d.is_contiguous():
 | 
				
			||||||
            x_2d = x_2d.contiguous()
 | 
					            x_2d = x_2d.contiguous()
 | 
				
			||||||
        return self.down_proj(linear_q4_0.mlp_forward_xpu(
 | 
					        return self.down_proj(xe_linear.mlp_forward_xpu(
 | 
				
			||||||
            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
					            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
				
			||||||
            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
 | 
					            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
 | 
				
			||||||
            SILU, qtype
 | 
					            SILU, qtype
 | 
				
			||||||
| 
						 | 
					@ -96,8 +96,8 @@ def baichuan_attention_forward_7b(
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # IPEX-LLM OPT: fuse rope
 | 
					    # IPEX-LLM OPT: fuse rope
 | 
				
			||||||
    if should_use_fuse_rope(hidden_states, position_ids, self.training):
 | 
					    if should_use_fuse_rope(hidden_states, position_ids, self.training):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        linear_q4_0.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
 | 
					        xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
 | 
				
			||||||
                                       query_states, key_states)
 | 
					                                       query_states, key_states)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
					        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
				
			||||||
| 
						 | 
					@ -126,18 +126,20 @@ def baichuan_attention_forward_7b(
 | 
				
			||||||
                                                     value_states.to(dtype=torch.float16),
 | 
					                                                     value_states.to(dtype=torch.float16),
 | 
				
			||||||
                                                     is_causal=True).to(hidden_states.dtype)
 | 
					                                                     is_causal=True).to(hidden_states.dtype)
 | 
				
			||||||
    elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
					    elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        if use_quantize_kv:
 | 
					        if use_quantize_kv:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
					            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
				
			||||||
                                            attention_mask)
 | 
					                                            attention_mask)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
 | 
					            attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
				
			||||||
 | 
					                                        attention_mask)
 | 
				
			||||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
					    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        if use_quantize_kv:
 | 
					        if use_quantize_kv:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
 | 
					            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
 | 
				
			||||||
 | 
					                                                   value_states)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
 | 
					            attn_output = xe_addons.sdp_causal(query_states, key_states, value_states)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        if use_quantize_kv:
 | 
					        if use_quantize_kv:
 | 
				
			||||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
					            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
				
			||||||
| 
						 | 
					@ -202,8 +204,8 @@ def baichuan_attention_forward_13b(
 | 
				
			||||||
            attention_mask = attention_mask[:, None, -q_len:, :]
 | 
					            attention_mask = attention_mask[:, None, -q_len:, :]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if use_quantize_kv and q_len == 1:
 | 
					    if use_quantize_kv and q_len == 1:
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
 | 
					        attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        if use_quantize_kv:
 | 
					        if use_quantize_kv:
 | 
				
			||||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
					            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
				
			||||||
| 
						 | 
					@ -216,8 +218,8 @@ def baichuan_attention_forward_13b(
 | 
				
			||||||
    attn_weights = attn_weights.to(query_states.dtype)
 | 
					    attn_weights = attn_weights.to(query_states.dtype)
 | 
				
			||||||
    attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
 | 
					    attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
 | 
				
			||||||
    if use_quantize_kv and q_len == 1:
 | 
					    if use_quantize_kv and q_len == 1:
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states)
 | 
					        attn_output = xe_addons.attn_value_fp8_matmul(attn_weights, value_states)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states)
 | 
					        attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states)
 | 
				
			||||||
    attn_output = attn_output.transpose(1, 2)
 | 
					    attn_output = attn_output.transpose(1, 2)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -66,8 +66,8 @@ def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def bloom_layer_norm_forward(self, hidden_states):
 | 
					def bloom_layer_norm_forward(self, hidden_states):
 | 
				
			||||||
    if use_fused_layer_norm(hidden_states, self.training):
 | 
					    if use_fused_layer_norm(hidden_states, self.training):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        result = linear_q4_0.fused_layer_norm(hidden_states,
 | 
					        result = xe_addons.fused_layer_norm(hidden_states,
 | 
				
			||||||
                                            [self.weight.size(0)],
 | 
					                                            [self.weight.size(0)],
 | 
				
			||||||
                                            self.weight,
 | 
					                                            self.weight,
 | 
				
			||||||
                                            self.bias,
 | 
					                                            self.bias,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -111,9 +111,9 @@ def should_split_qkv_tensor(query_layer, bsz, n_head, seq_len):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def chatglm_rms_norm_forward(self, hidden_states):
 | 
					def chatglm_rms_norm_forward(self, hidden_states):
 | 
				
			||||||
    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
					    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
					        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
				
			||||||
        output = linear_q4_0.rms_norm(self.weight, x_2d, self.eps)
 | 
					        output = xe_addons.rms_norm(self.weight, x_2d, self.eps)
 | 
				
			||||||
        return output.reshape(hidden_states.shape)
 | 
					        return output.reshape(hidden_states.shape)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    input_dtype = hidden_states.dtype
 | 
					    input_dtype = hidden_states.dtype
 | 
				
			||||||
| 
						 | 
					@ -322,8 +322,8 @@ def chatglm2_quantized_attention_forward_8eb45c(
 | 
				
			||||||
            context_layer = torch.matmul(attn.to(value.dtype), value)
 | 
					            context_layer = torch.matmul(attn.to(value.dtype), value)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            key, value = k_cache, v_cache
 | 
					            key, value = k_cache, v_cache
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_addons
 | 
				
			||||||
            context_layer = linear_q4_0.sdp_fp8(query_layer, key, value, attn_bias)
 | 
					            context_layer = xe_addons.sdp_fp8(query_layer, key, value, attn_bias)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # context_layer's shape: [bs, n_head, seq_len, head_dim] -> [seq_len, bs, n_head * head_dim]
 | 
					    # context_layer's shape: [bs, n_head, seq_len, head_dim] -> [seq_len, bs, n_head * head_dim]
 | 
				
			||||||
    context_layer = context_layer.permute(2, 0, 1, 3).contiguous().view(seq_len, batch_size, -1)
 | 
					    context_layer = context_layer.permute(2, 0, 1, 3).contiguous().view(seq_len, batch_size, -1)
 | 
				
			||||||
| 
						 | 
					@ -572,8 +572,8 @@ def core_attn_forward_8eb45c(query_layer, key_layer, value_layer, attention_mask
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            if use_sdp(query_layer.shape[2], key_layer.shape[2],
 | 
					            if use_sdp(query_layer.shape[2], key_layer.shape[2],
 | 
				
			||||||
                       query_layer.shape[-1], query_layer):
 | 
					                       query_layer.shape[-1], query_layer):
 | 
				
			||||||
                import linear_q4_0
 | 
					                import xe_addons
 | 
				
			||||||
                attn_output = linear_q4_0.sdp(query_layer, key_layer, value_layer, attn_bias)
 | 
					                attn_output = xe_addons.sdp(query_layer, key_layer, value_layer, attn_bias)
 | 
				
			||||||
                context_layer = attn_output.view(query_layer.shape)
 | 
					                context_layer = attn_output.view(query_layer.shape)
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                head_dim = query_layer.size(-1)
 | 
					                head_dim = query_layer.size(-1)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -261,9 +261,8 @@ def cohere_attention_forward_quantized(
 | 
				
			||||||
                                                         cache_kwargs, new_layout=True)
 | 
					                                                         cache_kwargs, new_layout=True)
 | 
				
			||||||
    if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
 | 
					    if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
 | 
				
			||||||
            and not hidden_states.requires_grad:
 | 
					            and not hidden_states.requires_grad:
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
					        attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask)
 | 
				
			||||||
                                          attention_mask)
 | 
					 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        key_states, value_states = restore_fp8_kv_cache(key_states,
 | 
					        key_states, value_states = restore_fp8_kv_cache(key_states,
 | 
				
			||||||
| 
						 | 
					@ -325,8 +324,8 @@ def cohere_attention_forward_origin(
 | 
				
			||||||
        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
					        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
					        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
        kv_seq_len = cache_k.shape[-2]
 | 
					        kv_seq_len = cache_k.shape[-2]
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
                                                                       self.q_proj.weight,
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
                                                                       self.k_proj.weight,
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
                                                                       self.v_proj.weight,
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
| 
						 | 
					@ -421,12 +420,12 @@ def cohere_attention_forward_origin(
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    elif not self.training and not hidden_states.requires_grad and \
 | 
					    elif not self.training and not hidden_states.requires_grad and \
 | 
				
			||||||
            use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
					            use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        if attention_mask is not None:
 | 
					        if attention_mask is not None:
 | 
				
			||||||
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
 | 
					            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            causal_mask = None
 | 
					            causal_mask = None
 | 
				
			||||||
        attn_output = linear_q4_0.sdp(query_states, key_states, value_states, causal_mask)
 | 
					        attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
 | 
				
			||||||
        attn_output = attn_output.view(query_states.shape)
 | 
					        attn_output = attn_output.view(query_states.shape)
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -79,9 +79,9 @@ def should_use_fuse_rope(self, hidden_states, position_ids):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def gemma_rms_norm_forward(self, hidden_states):
 | 
					def gemma_rms_norm_forward(self, hidden_states):
 | 
				
			||||||
    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
					    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
					        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
				
			||||||
        output = linear_q4_0.rms_norm(self.weight + 1, x_2d, self.eps)
 | 
					        output = xe_addons.rms_norm(self.weight + 1, x_2d, self.eps)
 | 
				
			||||||
        return output.reshape(hidden_states.shape)
 | 
					        return output.reshape(hidden_states.shape)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    input_dtype = hidden_states.dtype
 | 
					    input_dtype = hidden_states.dtype
 | 
				
			||||||
| 
						 | 
					@ -100,10 +100,10 @@ def gemma_mlp_forward(
 | 
				
			||||||
    bsz, hidden_size = x_2d.shape
 | 
					    bsz, hidden_size = x_2d.shape
 | 
				
			||||||
    qtype = getattr(self.gate_proj, "qtype", None)
 | 
					    qtype = getattr(self.gate_proj, "qtype", None)
 | 
				
			||||||
    if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
 | 
					    if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        if not x_2d.is_contiguous():
 | 
					        if not x_2d.is_contiguous():
 | 
				
			||||||
            x_2d = x_2d.contiguous()
 | 
					            x_2d = x_2d.contiguous()
 | 
				
			||||||
        out = self.down_proj(linear_q4_0.mlp_forward_xpu(
 | 
					        out = self.down_proj(xe_linear.mlp_forward_xpu(
 | 
				
			||||||
            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
					            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
				
			||||||
            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
 | 
					            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
 | 
				
			||||||
            GELU, qtype
 | 
					            GELU, qtype
 | 
				
			||||||
| 
						 | 
					@ -146,8 +146,8 @@ def gemma_attention_forward(
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        kv_seq_len = cache_k.shape[-2]
 | 
					        kv_seq_len = cache_k.shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
                                                                       self.q_proj.weight,
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
                                                                       self.k_proj.weight,
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
                                                                       self.v_proj.weight,
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -398,18 +398,18 @@ def internlm_xcomposser2_attention_forward(
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # IPEX-LLM OPT: sdp
 | 
					    # IPEX-LLM OPT: sdp
 | 
				
			||||||
    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
					    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        if use_quantize_kv:
 | 
					        if use_quantize_kv:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
					            attn_output = xe_linear.sdp_fp8(query_states, key_states, value_states,
 | 
				
			||||||
                                            attention_mask)
 | 
					                                            attention_mask)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
 | 
					            attn_output = xe_linear.sdp(query_states, key_states, value_states, attention_mask)
 | 
				
			||||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
					    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        if use_quantize_kv:
 | 
					        if use_quantize_kv:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
 | 
					            attn_output = xe_linear.sdp_fp8_causal(query_states, key_states, value_states)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
 | 
					            attn_output = xe_linear.sdp_causal(query_states, key_states, value_states)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        if use_quantize_kv:
 | 
					        if use_quantize_kv:
 | 
				
			||||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
					            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -169,9 +169,9 @@ def llama_model_forward_4_38(
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def llama_rms_norm_forward(self, hidden_states):
 | 
					def llama_rms_norm_forward(self, hidden_states):
 | 
				
			||||||
    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
					    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
					        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
				
			||||||
        output = linear_q4_0.rms_norm(self.weight, x_2d, self.variance_epsilon)
 | 
					        output = xe_addons.rms_norm(self.weight, x_2d, self.variance_epsilon)
 | 
				
			||||||
        return output.reshape(hidden_states.shape)
 | 
					        return output.reshape(hidden_states.shape)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    input_dtype = hidden_states.dtype
 | 
					    input_dtype = hidden_states.dtype
 | 
				
			||||||
| 
						 | 
					@ -190,10 +190,10 @@ def llama_mlp_forward(
 | 
				
			||||||
    bsz, hidden_size = x_2d.shape
 | 
					    bsz, hidden_size = x_2d.shape
 | 
				
			||||||
    qtype = getattr(self.gate_proj, "qtype", None)
 | 
					    qtype = getattr(self.gate_proj, "qtype", None)
 | 
				
			||||||
    if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
 | 
					    if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        if not x_2d.is_contiguous():
 | 
					        if not x_2d.is_contiguous():
 | 
				
			||||||
            x_2d = x_2d.contiguous()
 | 
					            x_2d = x_2d.contiguous()
 | 
				
			||||||
        out = self.down_proj(linear_q4_0.mlp_forward_xpu(
 | 
					        out = self.down_proj(xe_linear.mlp_forward_xpu(
 | 
				
			||||||
            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
					            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
				
			||||||
            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
 | 
					            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
 | 
				
			||||||
            SILU, qtype
 | 
					            SILU, qtype
 | 
				
			||||||
| 
						 | 
					@ -429,8 +429,8 @@ def llama_attention_forward_4_31_quantized(
 | 
				
			||||||
            dtype=hidden_states.dtype,
 | 
					            dtype=hidden_states.dtype,
 | 
				
			||||||
            device=device
 | 
					            device=device
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
                                                                       self.q_proj.weight,
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
                                                                       self.k_proj.weight,
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
                                                                       self.v_proj.weight,
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
| 
						 | 
					@ -504,9 +504,8 @@ def llama_attention_forward_4_31_quantized(
 | 
				
			||||||
                                                   bsz, q_len, kv_seq_len,
 | 
					                                                   bsz, q_len, kv_seq_len,
 | 
				
			||||||
                                                   self.head_dim, self.num_heads, output_attentions)
 | 
					                                                   self.head_dim, self.num_heads, output_attentions)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_addons
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
					            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask)
 | 
				
			||||||
                                              attention_mask)
 | 
					 | 
				
			||||||
            attn_weights = None
 | 
					            attn_weights = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
					    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
				
			||||||
| 
						 | 
					@ -562,8 +561,8 @@ def llama_attention_forward_4_31_original(
 | 
				
			||||||
        kv_seq_len = past_key_value[0].shape[-2]
 | 
					        kv_seq_len = past_key_value[0].shape[-2]
 | 
				
			||||||
        cache_k = past_key_value[0]
 | 
					        cache_k = past_key_value[0]
 | 
				
			||||||
        cache_v = past_key_value[1]
 | 
					        cache_v = past_key_value[1]
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
                                                                       self.q_proj.weight,
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
                                                                       self.k_proj.weight,
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
                                                                       self.v_proj.weight,
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
| 
						 | 
					@ -625,11 +624,11 @@ def llama_attention_forward_4_31_original(
 | 
				
			||||||
                                                                      self.k_proj,
 | 
					                                                                      self.k_proj,
 | 
				
			||||||
                                                                      self.v_proj,
 | 
					                                                                      self.v_proj,
 | 
				
			||||||
                                                                      self.q_proj.weight.qtype,)
 | 
					                                                                      self.q_proj.weight.qtype,)
 | 
				
			||||||
                    import linear_q4_0
 | 
					                    import xe_linear
 | 
				
			||||||
                    q_out_len = self.q_proj.out_len
 | 
					                    q_out_len = self.q_proj.out_len
 | 
				
			||||||
                    k_out_len = self.k_proj.out_len
 | 
					                    k_out_len = self.k_proj.out_len
 | 
				
			||||||
                    v_out_len = self.v_proj.out_len
 | 
					                    v_out_len = self.v_proj.out_len
 | 
				
			||||||
                    qkv_states = linear_q4_0.mm_xetla(hidden_states, self.qkv_proj_qweight,
 | 
					                    qkv_states = xe_linear.mm_xetla(hidden_states, self.qkv_proj_qweight,
 | 
				
			||||||
                                                    self.q_proj.weight.qtype)
 | 
					                                                    self.q_proj.weight.qtype)
 | 
				
			||||||
                    query_states = qkv_states[:, :, :q_out_len]
 | 
					                    query_states = qkv_states[:, :, :q_out_len]
 | 
				
			||||||
                    key_states = qkv_states[:, :, q_out_len:q_out_len + k_out_len]
 | 
					                    key_states = qkv_states[:, :, q_out_len:q_out_len + k_out_len]
 | 
				
			||||||
| 
						 | 
					@ -712,8 +711,8 @@ def llama_attention_forward_4_31_original(
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    elif not self.training and not hidden_states.requires_grad and \
 | 
					    elif not self.training and not hidden_states.requires_grad and \
 | 
				
			||||||
            use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
					            use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
 | 
					        attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
 | 
				
			||||||
        attn_output = attn_output.view(query_states.shape)
 | 
					        attn_output = attn_output.view(query_states.shape)
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
| 
						 | 
					@ -811,8 +810,8 @@ def llama_attention_selective_batching_forward_4_31(
 | 
				
			||||||
            past_k = new_cache_k
 | 
					            past_k = new_cache_k
 | 
				
			||||||
            past_v = new_cache_v
 | 
					            past_v = new_cache_v
 | 
				
			||||||
        hidden_states = hidden_states.view(1, -1)
 | 
					        hidden_states = hidden_states.view(1, -1)
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
                                                                       self.q_proj.weight,
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
                                                                       self.k_proj.weight,
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
                                                                       self.v_proj.weight,
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
| 
						 | 
					@ -1028,8 +1027,8 @@ def llama_attention_forward_4_38_quantized(
 | 
				
			||||||
            dtype=hidden_states.dtype,
 | 
					            dtype=hidden_states.dtype,
 | 
				
			||||||
            device=device
 | 
					            device=device
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
                                                                       self.q_proj.weight,
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
                                                                       self.k_proj.weight,
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
                                                                       self.v_proj.weight,
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
| 
						 | 
					@ -1176,13 +1175,12 @@ def llama_attention_forward_4_38_quantized(
 | 
				
			||||||
                                                     dtype=torch.float32).to(query_states.dtype)
 | 
					                                                     dtype=torch.float32).to(query_states.dtype)
 | 
				
			||||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
					            attn_output = torch.matmul(attn_weights, value_states)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_addons
 | 
				
			||||||
            if cache_position is not None:
 | 
					            if cache_position is not None:
 | 
				
			||||||
                new_attn_mask = attention_mask[:, :, kv_seq_len-q_len:kv_seq_len, 0:kv_seq_len]
 | 
					                new_attn_mask = attention_mask[:, :, kv_seq_len-q_len:kv_seq_len, 0:kv_seq_len]
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                new_attn_mask = attention_mask
 | 
					                new_attn_mask = attention_mask
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
					            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, new_attn_mask)
 | 
				
			||||||
                                              new_attn_mask)
 | 
					 | 
				
			||||||
            attn_weights = None
 | 
					            attn_weights = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
 | 
					    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
 | 
				
			||||||
| 
						 | 
					@ -1251,8 +1249,8 @@ def llama_attention_forward_4_38_original(
 | 
				
			||||||
        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
					        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
					        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
        kv_seq_len = cache_k.shape[-2]
 | 
					        kv_seq_len = cache_k.shape[-2]
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
                                                                       self.q_proj.weight,
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
                                                                       self.k_proj.weight,
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
                                                                       self.v_proj.weight,
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
| 
						 | 
					@ -1319,11 +1317,11 @@ def llama_attention_forward_4_38_original(
 | 
				
			||||||
                                                                      self.k_proj,
 | 
					                                                                      self.k_proj,
 | 
				
			||||||
                                                                      self.v_proj,
 | 
					                                                                      self.v_proj,
 | 
				
			||||||
                                                                      self.q_proj.weight.qtype,)
 | 
					                                                                      self.q_proj.weight.qtype,)
 | 
				
			||||||
                    import linear_q4_0
 | 
					                    import xe_linear
 | 
				
			||||||
                    q_out_len = self.q_proj.out_len
 | 
					                    q_out_len = self.q_proj.out_len
 | 
				
			||||||
                    k_out_len = self.k_proj.out_len
 | 
					                    k_out_len = self.k_proj.out_len
 | 
				
			||||||
                    v_out_len = self.v_proj.out_len
 | 
					                    v_out_len = self.v_proj.out_len
 | 
				
			||||||
                    qkv_states = linear_q4_0.mm_xetla(hidden_states,
 | 
					                    qkv_states = xe_linear.mm_xetla(hidden_states,
 | 
				
			||||||
                                                    self.qkv_proj_qweight,
 | 
					                                                    self.qkv_proj_qweight,
 | 
				
			||||||
                                                    self.q_proj.weight.qtype)
 | 
					                                                    self.q_proj.weight.qtype)
 | 
				
			||||||
                    query_states = qkv_states[:, :, :q_out_len]
 | 
					                    query_states = qkv_states[:, :, :q_out_len]
 | 
				
			||||||
| 
						 | 
					@ -1425,8 +1423,9 @@ def llama_attention_forward_4_38_original(
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    elif not self.training and not hidden_states.requires_grad and \
 | 
					    elif not self.training and not hidden_states.requires_grad and \
 | 
				
			||||||
            use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
					            use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_output = linear_q4_0.sdp(query_states, key_states, value_states, new_attention_mask)
 | 
					        attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
				
			||||||
 | 
					                                    new_attention_mask)
 | 
				
			||||||
        attn_output = attn_output.view(query_states.shape)
 | 
					        attn_output = attn_output.view(query_states.shape)
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -278,8 +278,8 @@ def mistral_attention_forward_quantized(
 | 
				
			||||||
            dtype=hidden_states.dtype,
 | 
					            dtype=hidden_states.dtype,
 | 
				
			||||||
            device=device
 | 
					            device=device
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
                                                                       self.q_proj.weight,
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
                                                                       self.k_proj.weight,
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
                                                                       self.v_proj.weight,
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
| 
						 | 
					@ -427,8 +427,8 @@ def mistral_attention_forward_quantized(
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
					            attn_output = torch.matmul(attn_weights, value_states)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_addons
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
					            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
				
			||||||
                                            attention_mask)
 | 
					                                            attention_mask)
 | 
				
			||||||
            attn_weights = None
 | 
					            attn_weights = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -476,8 +476,8 @@ def mistral_attention_forward_original(
 | 
				
			||||||
        kv_seq_len = past_key_value[0].shape[-2]
 | 
					        kv_seq_len = past_key_value[0].shape[-2]
 | 
				
			||||||
        cache_k = past_key_value[0]
 | 
					        cache_k = past_key_value[0]
 | 
				
			||||||
        cache_v = past_key_value[1]
 | 
					        cache_v = past_key_value[1]
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
                                                                       self.q_proj.weight,
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
                                                                       self.k_proj.weight,
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
                                                                       self.v_proj.weight,
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
| 
						 | 
					@ -496,11 +496,11 @@ def mistral_attention_forward_original(
 | 
				
			||||||
                                                              self.k_proj,
 | 
					                                                              self.k_proj,
 | 
				
			||||||
                                                              self.v_proj,
 | 
					                                                              self.v_proj,
 | 
				
			||||||
                                                              self.q_proj.qtype)
 | 
					                                                              self.q_proj.qtype)
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_linear
 | 
				
			||||||
            q_out_len = self.q_proj.out_len
 | 
					            q_out_len = self.q_proj.out_len
 | 
				
			||||||
            k_out_len = self.k_proj.out_len
 | 
					            k_out_len = self.k_proj.out_len
 | 
				
			||||||
            v_out_len = self.v_proj.out_len
 | 
					            v_out_len = self.v_proj.out_len
 | 
				
			||||||
            qkv_states = linear_q4_0.mm_xetla(hidden_states,
 | 
					            qkv_states = xe_linear.mm_xetla(hidden_states,
 | 
				
			||||||
                                            self.qkv_proj_qweight,
 | 
					                                            self.qkv_proj_qweight,
 | 
				
			||||||
                                            self.q_proj.qtype)
 | 
					                                            self.q_proj.qtype)
 | 
				
			||||||
            query_states = qkv_states[:, :, :q_out_len]
 | 
					            query_states = qkv_states[:, :, :q_out_len]
 | 
				
			||||||
| 
						 | 
					@ -592,8 +592,8 @@ def mistral_attention_forward_original(
 | 
				
			||||||
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
					        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
				
			||||||
    elif use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
					    elif use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
				
			||||||
        # new fp16 sdp doesn't require repeat_kv
 | 
					        # new fp16 sdp doesn't require repeat_kv
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
 | 
					        attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
 | 
				
			||||||
        attn_output = attn_output.view(query_states.shape)
 | 
					        attn_output = attn_output.view(query_states.shape)
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
        attn_output = attn_output.transpose(1, 2).contiguous()
 | 
					        attn_output = attn_output.transpose(1, 2).contiguous()
 | 
				
			||||||
| 
						 | 
					@ -695,8 +695,8 @@ def mistral_attention_forward_4_36_quantized(
 | 
				
			||||||
            dtype=hidden_states.dtype,
 | 
					            dtype=hidden_states.dtype,
 | 
				
			||||||
            device=device
 | 
					            device=device
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
                                                                       self.q_proj.weight,
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
                                                                       self.k_proj.weight,
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
                                                                       self.v_proj.weight,
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
| 
						 | 
					@ -852,9 +852,8 @@ def mistral_attention_forward_4_36_quantized(
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
					            attn_output = torch.matmul(attn_weights, value_states)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_addons
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
					            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask)
 | 
				
			||||||
                                              attention_mask)
 | 
					 | 
				
			||||||
            attn_weights = None
 | 
					            attn_weights = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
 | 
					    attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
 | 
				
			||||||
| 
						 | 
					@ -905,8 +904,8 @@ def mistral_attention_forward_4_36_original(
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        kv_seq_len = cache_k.shape[-2]
 | 
					        kv_seq_len = cache_k.shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
                                                                       self.q_proj.weight,
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
                                                                       self.k_proj.weight,
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
                                                                       self.v_proj.weight,
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
| 
						 | 
					@ -931,11 +930,11 @@ def mistral_attention_forward_4_36_original(
 | 
				
			||||||
                                                              self.k_proj,
 | 
					                                                              self.k_proj,
 | 
				
			||||||
                                                              self.v_proj,
 | 
					                                                              self.v_proj,
 | 
				
			||||||
                                                              self.q_proj.qtype)
 | 
					                                                              self.q_proj.qtype)
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_linear
 | 
				
			||||||
            q_out_len = self.q_proj.out_len
 | 
					            q_out_len = self.q_proj.out_len
 | 
				
			||||||
            k_out_len = self.k_proj.out_len
 | 
					            k_out_len = self.k_proj.out_len
 | 
				
			||||||
            v_out_len = self.v_proj.out_len
 | 
					            v_out_len = self.v_proj.out_len
 | 
				
			||||||
            qkv_states = linear_q4_0.mm_xetla(hidden_states,
 | 
					            qkv_states = xe_linear.mm_xetla(hidden_states,
 | 
				
			||||||
                                            self.qkv_proj_qweight,
 | 
					                                            self.qkv_proj_qweight,
 | 
				
			||||||
                                            self.q_proj.qtype)
 | 
					                                            self.q_proj.qtype)
 | 
				
			||||||
            query_states = qkv_states[:, :, :q_out_len]
 | 
					            query_states = qkv_states[:, :, :q_out_len]
 | 
				
			||||||
| 
						 | 
					@ -1033,8 +1032,8 @@ def mistral_attention_forward_4_36_original(
 | 
				
			||||||
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
					        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
				
			||||||
    elif use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
					    elif use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
				
			||||||
        # new fp16 sdp doesn't require repeat_kv
 | 
					        # new fp16 sdp doesn't require repeat_kv
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
 | 
					        attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
 | 
				
			||||||
        attn_output = attn_output.view(query_states.shape)
 | 
					        attn_output = attn_output.view(query_states.shape)
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
        attn_output = attn_output.transpose(1, 2).contiguous()
 | 
					        attn_output = attn_output.transpose(1, 2).contiguous()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -105,8 +105,8 @@ def mixtral_moeblock_forward(self,
 | 
				
			||||||
    elif bs < 256 and hidden_states.device.type == 'xpu':
 | 
					    elif bs < 256 and hidden_states.device.type == 'xpu':
 | 
				
			||||||
        final_hidden_states = torch.zeros((batch_size * sequence_length, hidden_dim),
 | 
					        final_hidden_states = torch.zeros((batch_size * sequence_length, hidden_dim),
 | 
				
			||||||
                                          dtype=hidden_states.dtype, device=hidden_states.device)
 | 
					                                          dtype=hidden_states.dtype, device=hidden_states.device)
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        indexes = linear_q4_0.get_moe_indexes(selected_experts.to(torch.int32).cpu(), 8)
 | 
					        indexes = xe_linear.get_moe_indexes(selected_experts.to(torch.int32).cpu(), 8)
 | 
				
			||||||
        for expert_idx in range(self.num_experts):
 | 
					        for expert_idx in range(self.num_experts):
 | 
				
			||||||
            expert_layer = self.experts[expert_idx]
 | 
					            expert_layer = self.experts[expert_idx]
 | 
				
			||||||
            idx_list = indexes[0][expert_idx]
 | 
					            idx_list = indexes[0][expert_idx]
 | 
				
			||||||
| 
						 | 
					@ -184,8 +184,8 @@ def mixtral_attention_forward(
 | 
				
			||||||
        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
					        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
					        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
        kv_seq_len = cache_k.shape[-2]
 | 
					        kv_seq_len = cache_k.shape[-2]
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
                                                                       self.q_proj.weight,
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
                                                                       self.k_proj.weight,
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
                                                                       self.v_proj.weight,
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
| 
						 | 
					@ -209,8 +209,8 @@ def mixtral_attention_forward(
 | 
				
			||||||
    #     cache_k = past_key_value.key_cache[self.layer_idx]
 | 
					    #     cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
    #     cache_v = past_key_value.value_cache[self.layer_idx]
 | 
					    #     cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
    #     kv_seq_len = cache_k.shape[-2]
 | 
					    #     kv_seq_len = cache_k.shape[-2]
 | 
				
			||||||
    #     import linear_q4_0
 | 
					    #     import xe_linear
 | 
				
			||||||
    #     query_states, key_states = linear_q4_0.forward_qk(hidden_states,
 | 
					    #     query_states, key_states = xe_linear.forward_qk(hidden_states,
 | 
				
			||||||
    #                                                       self.q_proj.weight,
 | 
					    #                                                       self.q_proj.weight,
 | 
				
			||||||
    #                                                       self.k_proj.weight,
 | 
					    #                                                       self.k_proj.weight,
 | 
				
			||||||
    #                                                       position_ids,
 | 
					    #                                                       position_ids,
 | 
				
			||||||
| 
						 | 
					@ -333,8 +333,8 @@ def mixtral_attention_forward(
 | 
				
			||||||
                                                     is_causal=True)
 | 
					                                                     is_causal=True)
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    elif use_sdp(query_states.shape[2], key_states.shape[2], self.head_dim, query_states):
 | 
					    elif use_sdp(query_states.shape[2], key_states.shape[2], self.head_dim, query_states):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
 | 
					        attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask)
 | 
				
			||||||
        attn_output = attn_output.view(query_states.shape)
 | 
					        attn_output = attn_output.view(query_states.shape)
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
| 
						 | 
					@ -389,8 +389,8 @@ def mixtral_mlp_forward(
 | 
				
			||||||
) -> torch.Tensor:
 | 
					) -> torch.Tensor:
 | 
				
			||||||
    qtype = getattr(self.w1, "qtype", None)
 | 
					    qtype = getattr(self.w1, "qtype", None)
 | 
				
			||||||
    if mlp_fusion_check(x, qtype, self.training) and not self.w1.enable_xetla:
 | 
					    if mlp_fusion_check(x, qtype, self.training) and not self.w1.enable_xetla:
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        return self.w2(linear_q4_0.mlp_forward_xpu(
 | 
					        return self.w2(xe_linear.mlp_forward_xpu(
 | 
				
			||||||
            x, self.w1.weight.data, self.w3.weight.data,
 | 
					            x, self.w1.weight.data, self.w3.weight.data,
 | 
				
			||||||
            x.shape[0], x.shape[1], self.w1.out_len,
 | 
					            x.shape[0], x.shape[1], self.w1.out_len,
 | 
				
			||||||
            SILU, qtype,
 | 
					            SILU, qtype,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -108,17 +108,17 @@ def attention_forward(
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # IPEX-LLM OPT: fuse rope
 | 
					    # IPEX-LLM OPT: fuse rope
 | 
				
			||||||
    if should_use_fuse_rope(hidden_states, position_ids, self.training):
 | 
					    if should_use_fuse_rope(hidden_states, position_ids, self.training):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        if self.rotary_emb.__class__.__name__ == "Phi3RotaryEmbedding":     # 4k
 | 
					        if self.rotary_emb.__class__.__name__ == "Phi3RotaryEmbedding":     # 4k
 | 
				
			||||||
            linear_q4_0.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
 | 
					            xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
 | 
				
			||||||
                                           query_states, key_states)
 | 
					                                           query_states, key_states)
 | 
				
			||||||
        else:   # 128k
 | 
					        else:   # 128k
 | 
				
			||||||
            if kv_seq_len > self.rotary_emb.original_max_position_embeddings:
 | 
					            if kv_seq_len > self.rotary_emb.original_max_position_embeddings:
 | 
				
			||||||
                linear_q4_0.rotary_half_inplaced(self.rotary_emb.long_inv_freq, position_ids,
 | 
					                xe_addons.rotary_half_inplaced(self.rotary_emb.long_inv_freq,
 | 
				
			||||||
                                                 query_states, key_states)
 | 
					                                               position_ids, query_states, key_states)
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                linear_q4_0.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
 | 
					                xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq,
 | 
				
			||||||
                                                 query_states, key_states)
 | 
					                                               position_ids, query_states, key_states)
 | 
				
			||||||
            # todo: fuse scaling_factor
 | 
					            # todo: fuse scaling_factor
 | 
				
			||||||
            query_states *= self.rotary_emb.scaling_factor
 | 
					            query_states *= self.rotary_emb.scaling_factor
 | 
				
			||||||
            key_states *= self.rotary_emb.scaling_factor
 | 
					            key_states *= self.rotary_emb.scaling_factor
 | 
				
			||||||
| 
						 | 
					@ -132,18 +132,19 @@ def attention_forward(
 | 
				
			||||||
                                                         self.layer_idx, None)
 | 
					                                                         self.layer_idx, None)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
					    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
					        if isinstance(past_key_value, DynamicFp8Cache):
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
					            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
				
			||||||
                                            attention_mask)
 | 
					                                            attention_mask)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
 | 
					            attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
				
			||||||
 | 
					                                        attention_mask)
 | 
				
			||||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
					    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
					        if isinstance(past_key_value, DynamicFp8Cache):
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
 | 
					            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
 | 
					            attn_output = xe_addons.sdp_causal(query_states, key_states, value_states)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
					        if isinstance(past_key_value, DynamicFp8Cache):
 | 
				
			||||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
					            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
				
			||||||
| 
						 | 
					@ -204,8 +205,8 @@ def mlp_forward(
 | 
				
			||||||
    qtype = getattr(self.gate_proj, "qtype", None)
 | 
					    qtype = getattr(self.gate_proj, "qtype", None)
 | 
				
			||||||
    if mlp_fusion_check(x_2d, qtype, self.training):
 | 
					    if mlp_fusion_check(x_2d, qtype, self.training):
 | 
				
			||||||
        x_2d = x_2d.contiguous()
 | 
					        x_2d = x_2d.contiguous()
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        return self.down_proj(linear_q4_0.mlp_forward_xpu(
 | 
					        return self.down_proj(xe_linear.mlp_forward_xpu(
 | 
				
			||||||
            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
					            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
				
			||||||
            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_features,
 | 
					            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_features,
 | 
				
			||||||
            SILU, qtype
 | 
					            SILU, qtype
 | 
				
			||||||
| 
						 | 
					@ -293,9 +294,9 @@ def phi3v_model_forward_wrapper(origin_model_forward):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def phi3_rms_norm_forward(self, hidden_states):
 | 
					def phi3_rms_norm_forward(self, hidden_states):
 | 
				
			||||||
    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
					    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
					        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
				
			||||||
        output = linear_q4_0.rms_norm(self.weight, x_2d, self.variance_epsilon)
 | 
					        output = xe_addons.rms_norm(self.weight, x_2d, self.variance_epsilon)
 | 
				
			||||||
        return output.reshape(hidden_states.shape)
 | 
					        return output.reshape(hidden_states.shape)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    input_dtype = hidden_states.dtype
 | 
					    input_dtype = hidden_states.dtype
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -92,9 +92,10 @@ def qwen_attention_forward(
 | 
				
			||||||
    rotary_pos_emb = rotary_pos_emb_list[0]
 | 
					    rotary_pos_emb = rotary_pos_emb_list[0]
 | 
				
			||||||
    if use_fuse_rope:
 | 
					    if use_fuse_rope:
 | 
				
			||||||
        rot_dim = rotary_pos_emb[0].size(-1)
 | 
					        rot_dim = rotary_pos_emb[0].size(-1)
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        linear_q4_0.rotary_half_inplaced(inv_freq, position_ids,
 | 
					        xe_addons.rotary_half_inplaced(inv_freq, position_ids,
 | 
				
			||||||
                                         query_states[..., :rot_dim], key_states[..., :rot_dim])
 | 
					                                       query_states[..., :rot_dim],
 | 
				
			||||||
 | 
					                                       key_states[..., :rot_dim])
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        rotary_pos_emb = [i[:, -q_len:, :, :].transpose(1, 2) for i in rotary_pos_emb]
 | 
					        rotary_pos_emb = [i[:, -q_len:, :, :].transpose(1, 2) for i in rotary_pos_emb]
 | 
				
			||||||
        query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb)
 | 
					        query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb)
 | 
				
			||||||
| 
						 | 
					@ -124,11 +125,11 @@ def qwen_attention_forward(
 | 
				
			||||||
                                                     value_states.to(dtype=torch.float16),
 | 
					                                                     value_states.to(dtype=torch.float16),
 | 
				
			||||||
                                                     is_causal=True).to(hidden_states.dtype)
 | 
					                                                     is_causal=True).to(hidden_states.dtype)
 | 
				
			||||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
					    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        if use_quantize_kv:
 | 
					        if use_quantize_kv:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
 | 
					            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
 | 
					            attn_output = xe_addons.sdp_causal(query_states, key_states, value_states)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        if q_len > 1:
 | 
					        if q_len > 1:
 | 
				
			||||||
            causal_mask = torch.tril(
 | 
					            causal_mask = torch.tril(
 | 
				
			||||||
| 
						 | 
					@ -146,12 +147,12 @@ def qwen_attention_forward(
 | 
				
			||||||
            attention_mask = None
 | 
					            attention_mask = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
					        if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_addons
 | 
				
			||||||
            if use_quantize_kv:
 | 
					            if use_quantize_kv:
 | 
				
			||||||
                attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
					                attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
				
			||||||
                                                attention_mask)
 | 
					                                                attention_mask)
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                attn_output = linear_q4_0.sdp(query_states, key_states, value_states,
 | 
					                attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
				
			||||||
                                            attention_mask)
 | 
					                                            attention_mask)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            if use_quantize_kv:
 | 
					            if use_quantize_kv:
 | 
				
			||||||
| 
						 | 
					@ -221,8 +222,8 @@ def qwen_attention_forward_registered(
 | 
				
			||||||
    rotary_pos_emb = rotary_pos_emb_list[0]
 | 
					    rotary_pos_emb = rotary_pos_emb_list[0]
 | 
				
			||||||
    if use_fuse_rope:
 | 
					    if use_fuse_rope:
 | 
				
			||||||
        rot_dim = rotary_pos_emb[0].size(-1)
 | 
					        rot_dim = rotary_pos_emb[0].size(-1)
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        linear_q4_0.rotary_half_inplaced(inv_freq, position_ids,
 | 
					        xe_linear.rotary_half_inplaced(inv_freq, position_ids,
 | 
				
			||||||
                                       query_states[..., :rot_dim], key_states[..., :rot_dim])
 | 
					                                       query_states[..., :rot_dim], key_states[..., :rot_dim])
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        rotary_pos_emb = [i[:, -q_len:, :, :].transpose(1, 2) for i in rotary_pos_emb]
 | 
					        rotary_pos_emb = [i[:, -q_len:, :, :].transpose(1, 2) for i in rotary_pos_emb]
 | 
				
			||||||
| 
						 | 
					@ -253,11 +254,11 @@ def qwen_attention_forward_registered(
 | 
				
			||||||
                                                     value_states.to(dtype=torch.float16),
 | 
					                                                     value_states.to(dtype=torch.float16),
 | 
				
			||||||
                                                     is_causal=True).to(hidden_states.dtype)
 | 
					                                                     is_causal=True).to(hidden_states.dtype)
 | 
				
			||||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
					    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        if use_quantize_kv:
 | 
					        if use_quantize_kv:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
 | 
					            attn_output = xe_linear.sdp_fp8_causal(query_states, key_states, value_states)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
 | 
					            attn_output = xe_linear.sdp_causal(query_states, key_states, value_states)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        if q_len > 1:
 | 
					        if q_len > 1:
 | 
				
			||||||
            causal_mask = registered_causal_mask[
 | 
					            causal_mask = registered_causal_mask[
 | 
				
			||||||
| 
						 | 
					@ -272,12 +273,12 @@ def qwen_attention_forward_registered(
 | 
				
			||||||
            attention_mask = None
 | 
					            attention_mask = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
					        if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_linear
 | 
				
			||||||
            if use_quantize_kv:
 | 
					            if use_quantize_kv:
 | 
				
			||||||
                attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
					                attn_output = xe_linear.sdp_fp8(query_states, key_states, value_states,
 | 
				
			||||||
                                                attention_mask)
 | 
					                                                attention_mask)
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                attn_output = linear_q4_0.sdp(query_states, key_states, value_states,
 | 
					                attn_output = xe_linear.sdp(query_states, key_states, value_states,
 | 
				
			||||||
                                            attention_mask)
 | 
					                                            attention_mask)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            if use_quantize_kv:
 | 
					            if use_quantize_kv:
 | 
				
			||||||
| 
						 | 
					@ -310,10 +311,10 @@ def qwen_mlp_forward(self, x: torch.Tensor) -> torch.Tensor:
 | 
				
			||||||
    x_2d = x.view(-1, x.shape[-1])
 | 
					    x_2d = x.view(-1, x.shape[-1])
 | 
				
			||||||
    qtype = getattr(self.w1, "qtype", None)
 | 
					    qtype = getattr(self.w1, "qtype", None)
 | 
				
			||||||
    if mlp_fusion_check(x_2d, qtype, self.training) and not self.w1.enable_xetla:
 | 
					    if mlp_fusion_check(x_2d, qtype, self.training) and not self.w1.enable_xetla:
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        if not x_2d.is_contiguous():
 | 
					        if not x_2d.is_contiguous():
 | 
				
			||||||
            x_2d = x_2d.contiguous()
 | 
					            x_2d = x_2d.contiguous()
 | 
				
			||||||
        return self.c_proj(linear_q4_0.mlp_forward_xpu(
 | 
					        return self.c_proj(xe_linear.mlp_forward_xpu(
 | 
				
			||||||
            x_2d, self.w2.weight.data, self.w1.weight.data,
 | 
					            x_2d, self.w2.weight.data, self.w1.weight.data,
 | 
				
			||||||
            x_2d.shape[0], x_2d.shape[1], self.w2.out_len,
 | 
					            x_2d.shape[0], x_2d.shape[1], self.w2.out_len,
 | 
				
			||||||
            SILU, qtype
 | 
					            SILU, qtype
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -310,8 +310,8 @@ def qwen2_attention_forward(
 | 
				
			||||||
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
					        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if should_use_fuse_rope(hidden_states, position_ids, self.training):
 | 
					    if should_use_fuse_rope(hidden_states, position_ids, self.training):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        linear_q4_0.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
 | 
					        xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
 | 
				
			||||||
                                       query_states, key_states)
 | 
					                                       query_states, key_states)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
					        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
				
			||||||
| 
						 | 
					@ -337,18 +337,19 @@ def qwen2_attention_forward(
 | 
				
			||||||
                           value_states.to(device, dtype=torch.float16),
 | 
					                           value_states.to(device, dtype=torch.float16),
 | 
				
			||||||
                           is_causal=True).to(hidden_states.dtype)
 | 
					                           is_causal=True).to(hidden_states.dtype)
 | 
				
			||||||
    elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
					    elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
					        if isinstance(past_key_value, DynamicFp8Cache):
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
 | 
					            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
				
			||||||
                                            attention_mask)
 | 
					                                            attention_mask)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
 | 
					            attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
				
			||||||
 | 
					                                        attention_mask)
 | 
				
			||||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
					    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
					        if isinstance(past_key_value, DynamicFp8Cache):
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
 | 
					            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
 | 
					            attn_output = xe_addons.sdp_causal(query_states, key_states, value_states)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
					        if isinstance(past_key_value, DynamicFp8Cache):
 | 
				
			||||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
					            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -372,8 +372,8 @@ def qwen2moe_attention_forward_quantized(
 | 
				
			||||||
                                                         self.layer_idx, cache_kwargs)
 | 
					                                                         self.layer_idx, cache_kwargs)
 | 
				
			||||||
    if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
 | 
					    if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
 | 
				
			||||||
            and not hidden_states.requires_grad:
 | 
					            and not hidden_states.requires_grad:
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
 | 
					        attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        key_states, value_states = restore_fp8_kv_cache(key_states,
 | 
					        key_states, value_states = restore_fp8_kv_cache(key_states,
 | 
				
			||||||
                                                        value_states, query_states.dtype)
 | 
					                                                        value_states, query_states.dtype)
 | 
				
			||||||
| 
						 | 
					@ -404,8 +404,8 @@ def qwen2moe_attention_forward_quantized(
 | 
				
			||||||
                                         p=self.attention_dropout, training=self.training)
 | 
					                                         p=self.attention_dropout, training=self.training)
 | 
				
			||||||
    if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
 | 
					    if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
 | 
				
			||||||
            and not hidden_states.requires_grad:
 | 
					            and not hidden_states.requires_grad:
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states)
 | 
					        attn_output = xe_addons.attn_value_fp8_matmul(attn_weights, value_states)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
					        attn_output = torch.matmul(attn_weights, value_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -456,12 +456,12 @@ def qwen2moe_attention_forward_origin(
 | 
				
			||||||
        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
					        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
					        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
        kv_seq_len = cache_k.shape[-2]
 | 
					        kv_seq_len = cache_k.shape[-2]
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        args = [hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight,
 | 
					        args = [hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight,
 | 
				
			||||||
                self.q_proj.bias, self.k_proj.bias, self.v_proj.bias, position_ids, cache_k,
 | 
					                self.q_proj.bias, self.k_proj.bias, self.v_proj.bias, position_ids, cache_k,
 | 
				
			||||||
                cache_v, self.q_proj.weight.qtype, self.v_proj.weight.qtype, kv_seq_len,
 | 
					                cache_v, self.q_proj.weight.qtype, self.v_proj.weight.qtype, kv_seq_len,
 | 
				
			||||||
                self.head_dim, self.rotary_emb.base]
 | 
					                self.head_dim, self.rotary_emb.base]
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv_bias(*args)
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv_bias(*args)
 | 
				
			||||||
        kv_seq_len += 1
 | 
					        kv_seq_len += 1
 | 
				
			||||||
        if self.layer_idx == 0:
 | 
					        if self.layer_idx == 0:
 | 
				
			||||||
            past_key_value._seen_tokens = kv_seq_len
 | 
					            past_key_value._seen_tokens = kv_seq_len
 | 
				
			||||||
| 
						 | 
					@ -613,12 +613,12 @@ def qwen2moe_attention_forward_sdpa(
 | 
				
			||||||
        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
					        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
					        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
        kv_seq_len = cache_k.shape[-2]
 | 
					        kv_seq_len = cache_k.shape[-2]
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        args = [hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight,
 | 
					        args = [hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight,
 | 
				
			||||||
                self.q_proj.bias, self.k_proj.bias, self.v_proj.bias, position_ids, cache_k,
 | 
					                self.q_proj.bias, self.k_proj.bias, self.v_proj.bias, position_ids, cache_k,
 | 
				
			||||||
                cache_v, self.q_proj.weight.qtype, self.v_proj.weight.qtype, kv_seq_len,
 | 
					                cache_v, self.q_proj.weight.qtype, self.v_proj.weight.qtype, kv_seq_len,
 | 
				
			||||||
                self.head_dim, self.rotary_emb.base]
 | 
					                self.head_dim, self.rotary_emb.base]
 | 
				
			||||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv_bias(*args)
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv_bias(*args)
 | 
				
			||||||
        kv_seq_len += 1
 | 
					        kv_seq_len += 1
 | 
				
			||||||
        if self.layer_idx == 0:
 | 
					        if self.layer_idx == 0:
 | 
				
			||||||
            past_key_value._seen_tokens = kv_seq_len
 | 
					            past_key_value._seen_tokens = kv_seq_len
 | 
				
			||||||
| 
						 | 
					@ -765,8 +765,8 @@ def qwen2moe_moeblock_forward(self, hidden_states: torch.Tensor):
 | 
				
			||||||
    elif bs < 256 and hidden_states.device.type == 'xpu':
 | 
					    elif bs < 256 and hidden_states.device.type == 'xpu':
 | 
				
			||||||
        final_hidden_states = torch.zeros((batch_size * sequence_length, hidden_dim),
 | 
					        final_hidden_states = torch.zeros((batch_size * sequence_length, hidden_dim),
 | 
				
			||||||
                                          dtype=hidden_states.dtype, device=hidden_states.device)
 | 
					                                          dtype=hidden_states.dtype, device=hidden_states.device)
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        indexes = linear_q4_0.get_moe_indexes(selected_experts.to(torch.int32).cpu(), 60)
 | 
					        indexes = xe_linear.get_moe_indexes(selected_experts.to(torch.int32).cpu(), 60)
 | 
				
			||||||
        for expert_idx in range(self.num_experts):
 | 
					        for expert_idx in range(self.num_experts):
 | 
				
			||||||
            expert_layer = self.experts[expert_idx]
 | 
					            expert_layer = self.experts[expert_idx]
 | 
				
			||||||
            idx_list = indexes[0][expert_idx]
 | 
					            idx_list = indexes[0][expert_idx]
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -162,8 +162,8 @@ def qwen_attention_forward_vl(
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if not self.training and not hidden_states.requires_grad and \
 | 
					    if not self.training and not hidden_states.requires_grad and \
 | 
				
			||||||
            use_sdp(q_len, key.shape[2], self.head_dim, query):
 | 
					            use_sdp(q_len, key.shape[2], self.head_dim, query):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_output = linear_q4_0.sdp(query, key, value, attention_mask)
 | 
					        attn_output = xe_addons.sdp(query, key, value, attention_mask)
 | 
				
			||||||
        attn_output = attn_output.view(query.shape)
 | 
					        attn_output = attn_output.view(query.shape)
 | 
				
			||||||
        attn_output = attn_output.transpose(1, 2)
 | 
					        attn_output = attn_output.transpose(1, 2)
 | 
				
			||||||
        attn_weight = None
 | 
					        attn_weight = None
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -56,8 +56,8 @@ def extract_key_value(self, hidden, state=None):
 | 
				
			||||||
            self.time_mix_receptance.data,
 | 
					            self.time_mix_receptance.data,
 | 
				
			||||||
        ]).to(dtype=hidden.dtype)
 | 
					        ]).to(dtype=hidden.dtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    import linear_q4_0
 | 
					    import xe_linear
 | 
				
			||||||
    mixed_result = linear_q4_0.rwkv_time_shift(hidden, shifted, self.mixed_mix)
 | 
					    mixed_result = xe_linear.rwkv_time_shift(hidden, shifted, self.mixed_mix)
 | 
				
			||||||
    key, value, receptance = mixed_result
 | 
					    key, value, receptance = mixed_result
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    key = self.key(key)
 | 
					    key = self.key(key)
 | 
				
			||||||
| 
						 | 
					@ -92,8 +92,8 @@ def rwkv_linear_attention_xpu(
 | 
				
			||||||
    time_decay = -torch.exp(time_decay)
 | 
					    time_decay = -torch.exp(time_decay)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # `num_state`, `den_state`, `max_state` will be modified during this call
 | 
					    # `num_state`, `den_state`, `max_state` will be modified during this call
 | 
				
			||||||
    import linear_q4_0
 | 
					    import xe_linear
 | 
				
			||||||
    output = linear_q4_0.rwkv_linear_attention_v4(
 | 
					    output = xe_linear.rwkv_linear_attention_v4(
 | 
				
			||||||
        time_decay,
 | 
					        time_decay,
 | 
				
			||||||
        time_first,
 | 
					        time_first,
 | 
				
			||||||
        key,
 | 
					        key,
 | 
				
			||||||
| 
						 | 
					@ -167,8 +167,8 @@ def rwkv_ffn_forward(
 | 
				
			||||||
        self.mixed_mix = torch.cat([self.time_mix_key.data,
 | 
					        self.mixed_mix = torch.cat([self.time_mix_key.data,
 | 
				
			||||||
                                    self.time_mix_receptance.data]).to(dtype=hidden.dtype)
 | 
					                                    self.time_mix_receptance.data]).to(dtype=hidden.dtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    import linear_q4_0
 | 
					    import xe_linear
 | 
				
			||||||
    mixed_result = linear_q4_0.rwkv_time_shift(hidden, shifted, self.mixed_mix)
 | 
					    mixed_result = xe_linear.rwkv_time_shift(hidden, shifted, self.mixed_mix)
 | 
				
			||||||
    key, receptance = mixed_result
 | 
					    key, receptance = mixed_result
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    key = torch.square(torch.relu(self.key(key)))
 | 
					    key = torch.square(torch.relu(self.key(key)))
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -58,8 +58,8 @@ def extract_key_value(self, hidden, state=None):
 | 
				
			||||||
            self.time_mix_gate.data,
 | 
					            self.time_mix_gate.data,
 | 
				
			||||||
        ]).to(dtype=hidden.dtype)
 | 
					        ]).to(dtype=hidden.dtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    import linear_q4_0
 | 
					    import xe_linear
 | 
				
			||||||
    mixed_result = linear_q4_0.rwkv_time_shift(hidden, shifted, self.mixed_mix)
 | 
					    mixed_result = xe_linear.rwkv_time_shift(hidden, shifted, self.mixed_mix)
 | 
				
			||||||
    key, value, receptance, gate = mixed_result
 | 
					    key, value, receptance, gate = mixed_result
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    key = self.key(key)
 | 
					    key = self.key(key)
 | 
				
			||||||
| 
						 | 
					@ -98,8 +98,8 @@ def rwkv_linear_attention_xpu(
 | 
				
			||||||
    time_first = time_first.float()
 | 
					    time_first = time_first.float()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # `state` will be updated inplaced during this call
 | 
					    # `state` will be updated inplaced during this call
 | 
				
			||||||
    import linear_q4_0
 | 
					    import xe_linear
 | 
				
			||||||
    out = linear_q4_0.rwkv_linear_attention_v5(
 | 
					    out = xe_linear.rwkv_linear_attention_v5(
 | 
				
			||||||
        time_decay,
 | 
					        time_decay,
 | 
				
			||||||
        time_first,
 | 
					        time_first,
 | 
				
			||||||
        receptance,
 | 
					        receptance,
 | 
				
			||||||
| 
						 | 
					@ -236,8 +236,8 @@ def rwkv_ffn_forward_wrapper(origin_rwkv_ffn_forward):
 | 
				
			||||||
                self.mixed_mix = torch.cat([self.time_mix_key.data,
 | 
					                self.mixed_mix = torch.cat([self.time_mix_key.data,
 | 
				
			||||||
                                            self.time_mix_receptance.data]).to(dtype=hidden.dtype)
 | 
					                                            self.time_mix_receptance.data]).to(dtype=hidden.dtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_linear
 | 
				
			||||||
            mixed_result = linear_q4_0.rwkv_time_shift(hidden, shifted, self.mixed_mix)
 | 
					            mixed_result = xe_linear.rwkv_time_shift(hidden, shifted, self.mixed_mix)
 | 
				
			||||||
            key, receptance = mixed_result
 | 
					            key, receptance = mixed_result
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            key = torch.square(torch.relu(self.key(key)))
 | 
					            key = torch.square(torch.relu(self.key(key)))
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -267,8 +267,9 @@ def stablelm_attention_forward_original(
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    elif not self.training and not hidden_states.requires_grad and \
 | 
					    elif not self.training and not hidden_states.requires_grad and \
 | 
				
			||||||
            use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
					            use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
 | 
					        attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
				
			||||||
 | 
					                                    attention_mask)
 | 
				
			||||||
        attn_output = attn_output.view(query_states.shape)
 | 
					        attn_output = attn_output.view(query_states.shape)
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
| 
						 | 
					@ -420,8 +421,8 @@ def stablelm_attention_forward_quantized(
 | 
				
			||||||
            value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
					            value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
				
			||||||
            attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
 | 
					            attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_addons
 | 
				
			||||||
            attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
 | 
					            attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
					        attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -444,8 +445,8 @@ def stablelm_attention_forward_quantized(
 | 
				
			||||||
        if query_states.size(2) != 1 or query_states.device.type != 'xpu':
 | 
					        if query_states.size(2) != 1 or query_states.device.type != 'xpu':
 | 
				
			||||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
					            attn_output = torch.matmul(attn_weights, value_states)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_addons
 | 
				
			||||||
            attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states)
 | 
					            attn_output = xe_addons.attn_value_fp8_matmul(attn_weights, value_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
 | 
					    attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
 | 
				
			||||||
    invalidInputError(attn_output.size() == attn_output_size,
 | 
					    invalidInputError(attn_output.size() == attn_output_size,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -135,8 +135,9 @@ def attention_forward(
 | 
				
			||||||
                                                     self.layer_idx, None)
 | 
					                                                     self.layer_idx, None)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if use_quantize_kv and q_len == 1:
 | 
					    if use_quantize_kv and q_len == 1:
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_addons
 | 
				
			||||||
        attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states, attention_mask)
 | 
					        attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
				
			||||||
 | 
					                                        attention_mask)
 | 
				
			||||||
        attn_weights = None
 | 
					        attn_weights = None
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        if use_quantize_kv:
 | 
					        if use_quantize_kv:
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -20,7 +20,8 @@ import warnings
 | 
				
			||||||
from ipex_llm.utils.common import invalidInputError
 | 
					from ipex_llm.utils.common import invalidInputError
 | 
				
			||||||
from ipex_llm.ggml.quantize import ggml_tensor_qtype
 | 
					from ipex_llm.ggml.quantize import ggml_tensor_qtype
 | 
				
			||||||
from ipex_llm.transformers.utils import get_ipex_version, get_xpu_device_type
 | 
					from ipex_llm.transformers.utils import get_ipex_version, get_xpu_device_type
 | 
				
			||||||
from ipex_llm.transformers.low_bit_linear import SYM_INT4, SYM_INT8, FP8E5, IQ2_XXS, FP4, FP8E4, FP6
 | 
					from ipex_llm.transformers.low_bit_linear import SYM_INT4, SYM_INT8, FP8E5, IQ2_XXS, FP4, FP8E4,\
 | 
				
			||||||
 | 
					    FP6, ASYM_INT4
 | 
				
			||||||
from ipex_llm.transformers.convert import is_deepspeed_available
 | 
					from ipex_llm.transformers.convert import is_deepspeed_available
 | 
				
			||||||
 | 
					
 | 
				
			||||||
FP8_KV_ALLOC_LENGTH = 512
 | 
					FP8_KV_ALLOC_LENGTH = 512
 | 
				
			||||||
| 
						 | 
					@ -128,8 +129,8 @@ def append_fp8_kv_cache(k_cache, v_cache, key, value):
 | 
				
			||||||
        new_k_cache = k_cache.as_strided(new_size, k_cache.stride(), storage_offset=0)
 | 
					        new_k_cache = k_cache.as_strided(new_size, k_cache.stride(), storage_offset=0)
 | 
				
			||||||
        new_v_cache = v_cache.as_strided(new_size, v_cache.stride(), storage_offset=0)
 | 
					        new_v_cache = v_cache.as_strided(new_size, v_cache.stride(), storage_offset=0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    import linear_q4_0
 | 
					    import xe_addons
 | 
				
			||||||
    linear_q4_0.quantize_key_value(key, value,
 | 
					    xe_addons.quantize_key_value(key, value,
 | 
				
			||||||
                                 new_k_cache[:, :, cur_length:new_length, :],
 | 
					                                 new_k_cache[:, :, cur_length:new_length, :],
 | 
				
			||||||
                                 new_v_cache[:, :, cur_length:new_length, :])
 | 
					                                 new_v_cache[:, :, cur_length:new_length, :])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -140,8 +141,8 @@ def restore_fp8_kv_cache(k_cache, v_cache, dtype):
 | 
				
			||||||
    key_states = torch.empty(k_cache.shape, device=k_cache.device, dtype=dtype)
 | 
					    key_states = torch.empty(k_cache.shape, device=k_cache.device, dtype=dtype)
 | 
				
			||||||
    value_states = torch.empty(v_cache.shape, device=v_cache.device, dtype=dtype)
 | 
					    value_states = torch.empty(v_cache.shape, device=v_cache.device, dtype=dtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    import linear_q4_0
 | 
					    import xe_addons
 | 
				
			||||||
    linear_q4_0.dequantize_key_value(k_cache, v_cache, key_states, value_states)
 | 
					    xe_addons.dequantize_key_value(k_cache, v_cache, key_states, value_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return key_states, value_states
 | 
					    return key_states, value_states
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -211,12 +212,12 @@ def apply_rotary_pos_emb_no_cache_xpu(q, k, position_ids, model_family, rope_the
 | 
				
			||||||
    if q.device.type != "xpu":
 | 
					    if q.device.type != "xpu":
 | 
				
			||||||
        invalidInputError(False,
 | 
					        invalidInputError(False,
 | 
				
			||||||
                          f"only xpu is supported in this function")
 | 
					                          f"only xpu is supported in this function")
 | 
				
			||||||
    import linear_q4_0
 | 
					    import xe_addons
 | 
				
			||||||
    q_embed = torch.empty(q.shape, dtype=q.dtype, device=q.device)
 | 
					    q_embed = torch.empty(q.shape, dtype=q.dtype, device=q.device)
 | 
				
			||||||
    k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device)
 | 
					    k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device)
 | 
				
			||||||
    if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral",
 | 
					    if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral",
 | 
				
			||||||
                        "mixtral"]:
 | 
					                        "mixtral"]:
 | 
				
			||||||
        linear_q4_0.apply_rotary_embedding_half_q_and_k(q, k, position_ids,
 | 
					        xe_addons.apply_rotary_embedding_half_q_and_k(q, k, position_ids,
 | 
				
			||||||
                                                      q_embed, k_embed, rope_theta)
 | 
					                                                      q_embed, k_embed, rope_theta)
 | 
				
			||||||
        return q_embed, k_embed
 | 
					        return q_embed, k_embed
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
| 
						 | 
					@ -228,11 +229,12 @@ def apply_rotary_pos_emb_cache_freq_xpu(q, k, sin, cos, model_family, position_i
 | 
				
			||||||
    if q.device.type != "xpu":
 | 
					    if q.device.type != "xpu":
 | 
				
			||||||
        invalidInputError(False,
 | 
					        invalidInputError(False,
 | 
				
			||||||
                          f"only xpu is supported in this function")
 | 
					                          f"only xpu is supported in this function")
 | 
				
			||||||
    import linear_q4_0
 | 
					    import xe_addons
 | 
				
			||||||
    q_embed = torch.empty(q.shape, dtype=q.dtype, device=q.device)
 | 
					    q_embed = torch.empty(q.shape, dtype=q.dtype, device=q.device)
 | 
				
			||||||
    k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device)
 | 
					    k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device)
 | 
				
			||||||
    if model_family in ["qwen", "mixtral"]:
 | 
					    if model_family in ["qwen", "mixtral"]:
 | 
				
			||||||
        linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
 | 
					        xe_addons.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos,
 | 
				
			||||||
 | 
					                                                                 q_embed, k_embed)
 | 
				
			||||||
    elif model_family in ["qwen2", "yuan", "stablelm", "qwen2_moe", "internlm"]:
 | 
					    elif model_family in ["qwen2", "yuan", "stablelm", "qwen2_moe", "internlm"]:
 | 
				
			||||||
        cos = cos.to(q.dtype)
 | 
					        cos = cos.to(q.dtype)
 | 
				
			||||||
        sin = sin.to(q.dtype)
 | 
					        sin = sin.to(q.dtype)
 | 
				
			||||||
| 
						 | 
					@ -240,11 +242,13 @@ def apply_rotary_pos_emb_cache_freq_xpu(q, k, sin, cos, model_family, position_i
 | 
				
			||||||
        sin = sin.squeeze(1).squeeze(0)  # [seq_len, dim]
 | 
					        sin = sin.squeeze(1).squeeze(0)  # [seq_len, dim]
 | 
				
			||||||
        cos = cos[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
 | 
					        cos = cos[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
 | 
				
			||||||
        sin = sin[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
 | 
					        sin = sin[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
 | 
				
			||||||
        linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
 | 
					        xe_addons.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos,
 | 
				
			||||||
 | 
					                                                                 q_embed, k_embed)
 | 
				
			||||||
    elif model_family in ["gemma", "phi3"]:
 | 
					    elif model_family in ["gemma", "phi3"]:
 | 
				
			||||||
        cos = cos.unsqueeze(1)
 | 
					        cos = cos.unsqueeze(1)
 | 
				
			||||||
        sin = sin.unsqueeze(1)
 | 
					        sin = sin.unsqueeze(1)
 | 
				
			||||||
        linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
 | 
					        xe_addons.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos,
 | 
				
			||||||
 | 
					                                                                 q_embed, k_embed)
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        invalidInputError(False,
 | 
					        invalidInputError(False,
 | 
				
			||||||
                          f"{model_family} is not supported.")
 | 
					                          f"{model_family} is not supported.")
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -97,10 +97,10 @@ def yuan_mlp_forward(
 | 
				
			||||||
    bsz, hidden_size = x_2d.shape
 | 
					    bsz, hidden_size = x_2d.shape
 | 
				
			||||||
    qtype = getattr(self.up_proj, "qtype", None)
 | 
					    qtype = getattr(self.up_proj, "qtype", None)
 | 
				
			||||||
    if mlp_fusion_check(x_2d, qtype, self.training):
 | 
					    if mlp_fusion_check(x_2d, qtype, self.training):
 | 
				
			||||||
        import linear_q4_0
 | 
					        import xe_linear
 | 
				
			||||||
        if not x_2d.is_contiguous():
 | 
					        if not x_2d.is_contiguous():
 | 
				
			||||||
            x_2d = x_2d.contiguous()
 | 
					            x_2d = x_2d.contiguous()
 | 
				
			||||||
        out = self.down_proj(linear_q4_0.mlp_forward_xpu(
 | 
					        out = self.down_proj(xe_linear.mlp_forward_xpu(
 | 
				
			||||||
            x_2d, self.up_proj.weight.data, self.gate_proj.weight.data,
 | 
					            x_2d, self.up_proj.weight.data, self.gate_proj.weight.data,
 | 
				
			||||||
            x_2d.shape[0], x_2d.shape[1], self.up_proj.out_len,
 | 
					            x_2d.shape[0], x_2d.shape[1], self.up_proj.out_len,
 | 
				
			||||||
            SILU, qtype
 | 
					            SILU, qtype
 | 
				
			||||||
| 
						 | 
					@ -268,8 +268,8 @@ def yuan_attention_forward_quantized(
 | 
				
			||||||
                                                            query_states.dtype)
 | 
					                                                            query_states.dtype)
 | 
				
			||||||
            attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
 | 
					            attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_addons
 | 
				
			||||||
            attn_weights = linear_q4_0.query_key_fp8_matmul(query_states, key_states)
 | 
					            attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
					        attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -292,8 +292,8 @@ def yuan_attention_forward_quantized(
 | 
				
			||||||
        if query_states.size(2) != 1 or device.type != 'xpu':
 | 
					        if query_states.size(2) != 1 or device.type != 'xpu':
 | 
				
			||||||
            attn_output = torch.matmul(attn_weights, value_states)
 | 
					            attn_output = torch.matmul(attn_weights, value_states)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            import linear_q4_0
 | 
					            import xe_addons
 | 
				
			||||||
            attn_output = linear_q4_0.attn_value_fp8_matmul(attn_weights, value_states)
 | 
					            attn_output = xe_addons.attn_value_fp8_matmul(attn_weights, value_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
 | 
					        invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
 | 
				
			||||||
                          "`attn_output` should be of size "
 | 
					                          "`attn_output` should be of size "
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue