optimize chatglm2 long sequence (#8662)

* add chatglm2

* optimize a little

* optimize chatglm long sequence

* fix style

* address comments and fix style

* fix bug
This commit is contained in:
Yang Wang 2023-08-04 08:56:24 +08:00 committed by GitHub
parent 3407f87075
commit b6468bac43
3 changed files with 335 additions and 24 deletions

View file

@ -40,6 +40,8 @@ import torch.nn as nn
from accelerate import init_empty_weights
from bigdl.llm.transformers.linear_quant import LinearQuant, ParamsQuant
import warnings
import transformers
import importlib
def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
@ -124,4 +126,42 @@ def ggml_convert_quant(model, qtype, convert_shape_only=False):
)
else:
model.to(torch.float32)
model = optimize(model)
return model
def convert_forward(m, target_m, new_forward):
for _, sub_m in m.named_children():
if isinstance(sub_m, target_m):
bound_method = new_forward.__get__(sub_m, sub_m.__class__)
setattr(sub_m, "forward", bound_method)
convert_forward(sub_m, target_m, new_forward)
def optimize(model):
from packaging import version
from bigdl.llm.transformers.models.llama import llama_attention_forward_4_31
trans_version = transformers.__version__
if version.parse(trans_version) >= version.parse("4.31.0"):
convert_forward(
model,
transformers.models.llama.modeling_llama.LlamaAttention,
llama_attention_forward_4_31,)
else:
# todo implement 4.28.0 ~ 4.30.2
pass
if "chatglm2" in model.config._name_or_path:
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from bigdl.llm.transformers.models.chatglm import chatglm_attention_forward_8eb45c
from bigdl.llm.transformers.models.chatglm import core_attn_forward_8eb45c
convert_forward(model,
module.SelfAttention,
chatglm_attention_forward_8eb45c
)
convert_forward(model,
module.CoreAttention,
core_attn_forward_8eb45c)
return model

View file

@ -24,6 +24,8 @@ from .utils import extract_local_archive_file, \
fix_key
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
from bigdl.llm.utils.common import invalidInputError, MuteHFLogger
import sys
import importlib
def save_low_bit(self, *args, **kwargs):
@ -33,14 +35,6 @@ def save_low_bit(self, *args, **kwargs):
self.save_pretrained(*args, **kwargs)
def convert_forward(m, target_m, new_forward):
for _, sub_m in m.named_children():
if isinstance(sub_m, target_m):
bound_method = new_forward.__get__(sub_m, sub_m.__class__)
setattr(sub_m, "forward", bound_method)
convert_forward(sub_m, target_m, new_forward)
class _BaseAutoModelClass:
HF_MODEL = None
@ -91,20 +85,6 @@ class _BaseAutoModelClass:
return model
@classmethod
def optimize(cls, model):
from packaging import version
from bigdl.llm.transformers.models.llama import llama_attention_forward_4_31
trans_version = transformers.__version__
if version.parse(trans_version) >= version.parse("4.31.0"):
convert_forward(
model,
transformers.models.llama.modeling_llama.LlamaAttention,
llama_attention_forward_4_31,)
else:
# todo implement 4.28.0 ~ 4.30.2
pass
@classmethod
def load_convert(cls, q_k, *args, **kwargs):
from .convert import ggml_convert_quant
@ -117,8 +97,6 @@ class _BaseAutoModelClass:
model = ggml_convert_quant(model, qtype)
model.config.update({"bigdl_transformers_low_bit": q_k})
cls.optimize(model)
# add save_low_bit to pretrained model dynamically
import types
model.save_low_bit = types.MethodType(save_low_bit, model)

View file

@ -0,0 +1,293 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is adapted from
# https://huggingface.co/THUDM/chatglm2-6b/blob/8eb45c842594b8473f291d0f94e7bbe86ffc67d8/modeling_chatglm.py
#
import torch
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
import torch.nn.functional as F
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
KV_CACHE_ALLOC_MIN_LENGTH = 512
def split_tensor_along_last_dim(
tensor: torch.Tensor,
num_partitions: int,
contiguous_split_chunks: bool = False,
) -> List[torch.Tensor]:
"""Split a tensor along its last dimension.
Arguments:
tensor: input tensor.
num_partitions: number of partitions to split the tensor
contiguous_split_chunks: If True, make each chunk contiguous
in memory.
Returns:
A list of Tensors
"""
# Get the size and dimension.
last_dim = tensor.dim() - 1
last_dim_size = tensor.size()[last_dim] // num_partitions
# Split.
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
# Note: torch.split does not create contiguous tensors by default.
if contiguous_split_chunks:
return tuple(chunk.contiguous() for chunk in tensor_list)
return tensor_list
@torch.jit.script
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
# x: [sq, b, np, hn]
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
rot_dim = rope_cache.shape[-2] * 2
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
# truncate to support variable sizes
rope_cache = rope_cache[:sq]
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return torch.cat((x_out2, x_pass), dim=-1)
def chatglm_attention_forward_8eb45c(
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
):
# hidden_states: [sq, b, h]
# =================================================
# Pre-allocate memory for key-values for inference.
# =================================================
# =====================
# Query, Key, and Value
# =====================
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
mixed_x_layer = self.query_key_value(hidden_states)
if self.multi_query_attention:
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
[
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
],
dim=-1,
)
query_layer = query_layer.view(
query_layer.size()[:-1] + (self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head)
)
key_layer = key_layer.view(
key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition,
self.hidden_size_per_attention_head)
)
value_layer = value_layer.view(
value_layer.size()[:-1]
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
)
else:
new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads_per_partition,
3 * self.hidden_size_per_attention_head)
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
# apply relative positional encoding (rotary embedding)
if rotary_pos_emb is not None:
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
cur_length, batch_size = query_layer.shape[0], query_layer.shape[1]
if self.multi_query_attention:
key_length = key_layer.size(0)
query_group_size = self.num_attention_heads_per_partition // \
self.num_multi_query_groups_per_partition
key_layer = key_layer.permute(1, 2, 0, 3).unsqueeze(-3) # [bs, nh/k, sl, hn]
key_layer = key_layer.expand(-1, -1, query_group_size, -1, -1)
key_layer = key_layer.contiguous().view((batch_size,
self.num_attention_heads_per_partition,
key_length,
self.hidden_size_per_attention_head))
value_layer = value_layer.permute(1, 2, 0, 3).unsqueeze(-3)
value_layer = value_layer.expand(-1, -1, query_group_size, -1, -1)
value_layer = value_layer.contiguous().view((batch_size,
self.num_attention_heads_per_partition,
key_length,
self.hidden_size_per_attention_head))
# adjust key and value for inference
if kv_cache is not None:
cache_k, cache_v = kv_cache
past_length = cache_k.size(2)
if past_length + cur_length > self.max_cache_length:
self.max_cache_length = past_length + cur_length + KV_CACHE_ALLOC_BLOCK_LENGTH
self.kv_cache = (torch.empty(batch_size,
self.num_attention_heads_per_partition,
self.max_cache_length,
self.hidden_size_per_attention_head,),
torch.empty(batch_size,
self.num_attention_heads_per_partition,
self.max_cache_length,
self.hidden_size_per_attention_head,))
self.kv_cache[0][:, :, :past_length, :] = cache_k
self.kv_cache[1][:, :, :past_length, :] = cache_v
self.kv_cache[0][:, :, past_length:past_length + cur_length, :] = key_layer
self.kv_cache[1][:, :, past_length:past_length + cur_length, :] = value_layer
key_layer = self.kv_cache[0][:, :, :past_length + cur_length, :]
value_layer = self.kv_cache[1][:, :, :past_length + cur_length, :]
elif use_cache:
self.max_cache_length = max(KV_CACHE_ALLOC_MIN_LENGTH, cur_length) \
+ KV_CACHE_ALLOC_BLOCK_LENGTH
self.kv_cache = (torch.empty(batch_size, self.num_attention_heads_per_partition,
self.max_cache_length, self.hidden_size_per_attention_head,),
torch.empty(batch_size, self.num_attention_heads_per_partition,
self.max_cache_length, self.hidden_size_per_attention_head,))
self.kv_cache[0][:, :, :cur_length, :] = key_layer
self.kv_cache[1][:, :, :cur_length, :] = value_layer
if use_cache:
kv_cache = (key_layer, value_layer)
else:
kv_cache = None
# ==================================
# core attention computation
# ==================================
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
# =================
# Output. [sq, b, h]
# =================
output = self.dense(context_layer)
return output, kv_cache
def core_attn_forward_8eb45c(self, query_layer, key_layer, value_layer, attention_mask):
pytorch_major_version = int(torch.__version__.split('.')[0])
if query_layer.size(0) > 1 and pytorch_major_version >= 2:
query_layer = query_layer.permute(1, 2, 0, 3)
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
key_layer,
value_layer,
is_causal=True)
else:
if attention_mask is not None:
attention_mask = ~attention_mask
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
key_layer,
value_layer,
attention_mask)
context_layer = context_layer.permute(2, 0, 1, 3)
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
context_layer = context_layer.reshape(*new_context_layer_shape)
else:
# Raw attention scores
# [b, np, sq, sk]
output_size = (query_layer.size(1), query_layer.size(2),
query_layer.size(0), key_layer.size(2))
# [sq, b, np, hn] -> [sq, b * np, hn]
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
# [sk, b, np, hn] -> [sk, b * np, hn]
key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
# preallocting input tensor: [b * np, sq, sk]
matmul_input_buffer = torch.empty(
output_size[0] * output_size[1],
output_size[2], output_size[3], dtype=query_layer.dtype,
device=query_layer.device
)
# Raw attention scores. [b * np, sq, sk]
matmul_result = torch.baddbmm(
matmul_input_buffer,
query_layer.transpose(0, 1), # [b * np, sq, hn]
key_layer.transpose(1, 2), # [b * np, hn, sk]
beta=0.0,
alpha=(1.0 / self.norm_factor),
)
# change view to [b, np, sq, sk]
attention_scores = matmul_result.view(*output_size)
# ===========================
# Attention probs and dropout
# ===========================
# attention scores and attention mask [b, np, sq, sk]
if self.attention_softmax_in_fp32:
attention_scores = attention_scores.float()
if self.coeff is not None:
attention_scores = attention_scores * self.coeff
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
device=attention_scores.device, dtype=torch.bool)
attention_mask.tril_()
attention_mask = ~attention_mask
if attention_mask is not None:
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
attention_probs = F.softmax(attention_scores, dim=-1)
attention_probs = attention_probs.type_as(value_layer)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.attention_dropout(attention_probs)
# =========================
# Context layer. [sq, b, hp]
# =========================
# value_layer -> context layer.
# [sk, b, np, hn] --> [b, np, sq, hn]
# context layer shape: [b, np, sq, hn]
output_size = (value_layer.size(0), value_layer.size(1),
query_layer.size(0), value_layer.size(3))
# change view [sk, b * np, hn]
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
# change view [b * np, sq, sk]
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
# matmul: [b * np, sq, hn]
context_layer = torch.bmm(attention_probs, value_layer)
# change view [b, np, sq, hn]
context_layer = context_layer.view(*output_size)
# [b, np, sq, hn] --> [sq, b, np, hn]
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
# [sq, b, np, hn] --> [sq, b, hp]
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer