LLM: add flash attention support for llama (#9518)
* add initial flash attention for llama * accelerate fp32 first token by changing to fp16 in advance * support fp32
This commit is contained in:
parent
bf579507c2
commit
b63aae8a8e
1 changed files with 68 additions and 24 deletions
|
|
@ -106,6 +106,16 @@ def llama_attention_forward_4_31(
|
|||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
# for flash attention
|
||||
original_dtype = hidden_states.dtype
|
||||
if not self.training and not hidden_states.requires_grad:
|
||||
fsdp_flag = check_flash_attention_available(hidden_states)
|
||||
else:
|
||||
fsdp_flag = False
|
||||
if fsdp_flag and q_len > 1:
|
||||
attention_dtype = torch.float16 # use fp16 for flash attention
|
||||
else:
|
||||
attention_dtype = original_dtype
|
||||
|
||||
if self.config.pretraining_tp > 1:
|
||||
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
||||
|
|
@ -194,31 +204,23 @@ def llama_attention_forward_4_31(
|
|||
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups).to(device,
|
||||
dtype=hidden_states.dtype)
|
||||
dtype=attention_dtype)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups).to(device,
|
||||
dtype=hidden_states.dtype)
|
||||
dtype=attention_dtype)
|
||||
|
||||
attn_weights = torch.matmul(query_states,
|
||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
attn_weights_size = (bsz, self.num_heads, q_len, kv_seq_len)
|
||||
if attn_weights.size() != attn_weights_size:
|
||||
invalidInputError(False,
|
||||
f"Attention weights should be of size {attn_weights_size}, "
|
||||
f"but is {attn_weights.size()}")
|
||||
|
||||
if attention_mask is not None:
|
||||
attn_mask_size = (bsz, 1, q_len, kv_seq_len)
|
||||
if attention_mask.size() != attn_mask_size:
|
||||
invalidInputError(False,
|
||||
f"Attention mask should be of size {attn_mask_size}, "
|
||||
f"but is {attention_mask.size()}")
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
if fsdp_flag and q_len > 1:
|
||||
# now only use flash attention for first token
|
||||
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=attention_dtype),
|
||||
key_states,
|
||||
value_states,
|
||||
is_causal=True)
|
||||
attn_weights = None
|
||||
else:
|
||||
# otherwise, use native attention
|
||||
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
|
||||
attention_mask,
|
||||
bsz, q_len, kv_seq_len,
|
||||
self.head_dim, self.num_heads)
|
||||
|
||||
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
|
||||
if attn_output.size() != attn_output_size:
|
||||
|
|
@ -241,4 +243,46 @@ def llama_attention_forward_4_31(
|
|||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||
|
||||
|
||||
def check_flash_attention_available(query):
|
||||
# check whether ipex flash attention can be used
|
||||
if query.device.type != "xpu":
|
||||
# ipex flash attention only support for xpu
|
||||
return False
|
||||
ipex_version = get_ipex_version()
|
||||
if ipex_version <= "2.0.110+xpu":
|
||||
# ipex flash attention is supported from ipex 2.1
|
||||
return False
|
||||
if not torch.xpu.has_xetla():
|
||||
# ipex flash attention is only supported for xetla
|
||||
# may update this later
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def native_sdp(query, key, value, attention_mask,
|
||||
bsz, q_len, kv_seq_len, head_dim, num_heads):
|
||||
attn_weights = torch.matmul(query,
|
||||
key.transpose(2, 3)) / math.sqrt(head_dim)
|
||||
|
||||
attn_weights_size = (bsz, num_heads, q_len, kv_seq_len)
|
||||
if attn_weights.size() != attn_weights_size:
|
||||
invalidInputError(False,
|
||||
f"Attention weights should be of size {attn_weights_size}, "
|
||||
f"but is {attn_weights.size()}")
|
||||
|
||||
if attention_mask is not None:
|
||||
attn_mask_size = (bsz, 1, q_len, kv_seq_len)
|
||||
if attention_mask.size() != attn_mask_size:
|
||||
invalidInputError(False,
|
||||
f"Attention mask should be of size {attn_mask_size}, "
|
||||
f"but is {attention_mask.size()}")
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(value.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value)
|
||||
return attn_output, attn_weights
|
||||
|
|
|
|||
Loading…
Reference in a new issue