Add installation guide in Orca AutoML Doc (#3304)
* add install guide in orca.automl doc * typo * update * add sklearn and tensorboard
This commit is contained in:
		
							parent
							
								
									49af13e215
								
							
						
					
					
						commit
						b622d60048
					
				
					 1 changed files with 20 additions and 1 deletions
				
			
		| 
						 | 
					@ -4,6 +4,25 @@
 | 
				
			||||||
 | 
					
 | 
				
			||||||
**Orca `AutoEstimator` provides similar APIs as Orca `Estimator` for distributed hyper-parameter tuning.** 
 | 
					**Orca `AutoEstimator` provides similar APIs as Orca `Estimator` for distributed hyper-parameter tuning.** 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### **Install**
 | 
				
			||||||
 | 
					We recommend using [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) to prepare the Python environment.
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n bigdl-orca-automl python=3.7  # "bigdl-orca-automl" is conda environment name, you can use any name you like.
 | 
				
			||||||
 | 
					conda activate bigdl-orca-automl
 | 
				
			||||||
 | 
					pip install bigdl-orca[automl]
 | 
				
			||||||
 | 
					````
 | 
				
			||||||
 | 
					You can install the latest release version of BigDL Orca as follows:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					pip install --pre --upgrade bigdl-orca[automl]
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					_Note that with extra key of [automl], `pip` will automatically install the additional dependencies for distributed hyper-parameter tuning,
 | 
				
			||||||
 | 
					including `ray[tune]==1.2.0`, `psutil`, `aiohttp==3.7.0`, `aioredis==1.1.0`, `setproctitle`, `hiredis==1.1.0`, `async-timeout==3.0.1`, `scikit-learn`, `tensorboard`, `xgboost`._
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					To use [Pytorch Estimator](#pytorch-autoestimator), you need to install Pytorch with `pip install torch==1.8.1`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					To use [TensorFlow/Keras AutoEstimator](#tensorflow-keras-autoestimator), you need to install Tensorflow with `pip install tensorflow==1.15.0`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### **1. AutoEstimator**
 | 
					### **1. AutoEstimator**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
To perform distributed hyper-parameter tuning, user can first create an Orca `AutoEstimator` from standard TensorFlow Keras or PyTorch model, and then call `AutoEstimator.fit`.
 | 
					To perform distributed hyper-parameter tuning, user can first create an Orca `AutoEstimator` from standard TensorFlow Keras or PyTorch model, and then call `AutoEstimator.fit`.
 | 
				
			||||||
| 
						 | 
					@ -180,7 +199,7 @@ auto_estimator.fit(
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
See [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details.
 | 
					See [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/AutoML/automl.html#orca-automl-auto-estimator) for more details.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### **4. Scheduler**
 | 
					### **5. Scheduler**
 | 
				
			||||||
*Scheduler* can stop/pause/tweak the hyper-parameters of running trials, making the hyper-parameter tuning process much efficient.
 | 
					*Scheduler* can stop/pause/tweak the hyper-parameters of running trials, making the hyper-parameter tuning process much efficient.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
We support all *Schedulers* in [Ray Tune](https://docs.ray.io/en/master/index.html). See [Ray Tune Schedulers](https://docs.ray.io/en/master/tune/api_docs/schedulers.html#schedulers-ref) for more details.
 | 
					We support all *Schedulers* in [Ray Tune](https://docs.ray.io/en/master/index.html). See [Ray Tune Schedulers](https://docs.ray.io/en/master/tune/api_docs/schedulers.html#schedulers-ref) for more details.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue