In harness-evaluation workflow, add statistical tables (#10118)
* chnage storage * fix typo * change label * change label to arc03 * change needs in the last step * add generate csv in harness/make_table_results.py * modify needs in the last job * add csv to html * mfix path issue in llm-harness-summary-nightly * modify output_path * modify args in make_table_results.py * modify make table command in summary * change pr env label * remove irrelevant code in summary; add set output path step; add limit in harness run * re-organize code structure * modify limit in run harness * modify csv_to_html input path * modify needs in summary-nightly
This commit is contained in:
parent
c2378a9546
commit
b4dc33def6
4 changed files with 451 additions and 18 deletions
81
.github/workflows/llm-harness-evaluation.yml
vendored
81
.github/workflows/llm-harness-evaluation.yml
vendored
|
|
@ -65,10 +65,11 @@ jobs:
|
||||||
- name: set-pr-env
|
- name: set-pr-env
|
||||||
if: ${{github.event_name == 'pull_request'}}
|
if: ${{github.event_name == 'pull_request'}}
|
||||||
env:
|
env:
|
||||||
PR_MATRIX_MODEL_NAME: '["Llama2-7b-guanaco-dolphin-500"]'
|
PR_MATRIX_MODEL_NAME: '["Mistral-7B-v0.1"]'
|
||||||
PR_MATRIX_TASK: '["truthfulqa"]'
|
PR_MATRIX_TASK: '["arc", "truthfulqa", "winogrande"]'
|
||||||
PR_MATRIX_PRECISION: '["sys_int4"]'
|
PR_MATRIX_PRECISION: '["fp8"]'
|
||||||
PR_LABELS: '["self-hosted", "llm", "temp-arc01"]'
|
PR_LABELS: '["self-hosted", "llm", "accuracy-nightly"]'
|
||||||
|
|
||||||
run: |
|
run: |
|
||||||
echo "model_name=$PR_MATRIX_MODEL_NAME" >> $GITHUB_ENV
|
echo "model_name=$PR_MATRIX_MODEL_NAME" >> $GITHUB_ENV
|
||||||
echo "precision=$PR_MATRIX_PRECISION" >> $GITHUB_ENV
|
echo "precision=$PR_MATRIX_PRECISION" >> $GITHUB_ENV
|
||||||
|
|
@ -168,6 +169,7 @@ jobs:
|
||||||
env:
|
env:
|
||||||
USE_XETLA: OFF
|
USE_XETLA: OFF
|
||||||
# SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS: 1
|
# SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS: 1
|
||||||
|
# TODO: limit just for debug, remove it later
|
||||||
run: |
|
run: |
|
||||||
export HF_HOME=${HARNESS_HF_HOME}
|
export HF_HOME=${HARNESS_HF_HOME}
|
||||||
export HF_DATASETS=$HARNESS_HF_HOME/datasets
|
export HF_DATASETS=$HARNESS_HF_HOME/datasets
|
||||||
|
|
@ -180,7 +182,8 @@ jobs:
|
||||||
--precision ${{ matrix.precision }} \
|
--precision ${{ matrix.precision }} \
|
||||||
--device ${{ matrix.device }} \
|
--device ${{ matrix.device }} \
|
||||||
--tasks ${{ matrix.task }} \
|
--tasks ${{ matrix.task }} \
|
||||||
--batch_size 1 --no_cache --output_path results
|
--batch_size 1 --no_cache --output_path results \
|
||||||
|
--limit 3
|
||||||
|
|
||||||
|
|
||||||
- uses: actions/upload-artifact@v3
|
- uses: actions/upload-artifact@v3
|
||||||
|
|
@ -211,18 +214,70 @@ jobs:
|
||||||
run: |
|
run: |
|
||||||
pip install --upgrade pip
|
pip install --upgrade pip
|
||||||
pip install jsonlines pytablewriter regex
|
pip install jsonlines pytablewriter regex
|
||||||
|
|
||||||
DATE=$(date +%Y-%m-%d)
|
|
||||||
OUTPUT_PATH="results_$DATE"
|
|
||||||
echo "OUTPUT_PATH=$OUTPUT_PATH" >> $GITHUB_ENV
|
|
||||||
- name: Download all results
|
- name: Download all results
|
||||||
uses: actions/download-artifact@v3
|
uses: actions/download-artifact@v3
|
||||||
with:
|
with:
|
||||||
name: harness_results
|
name: harness_results
|
||||||
path: ${{ env.OUTPUT_PATH }}
|
path: results
|
||||||
- name: Summarize the results
|
- name: Summarize the results
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
echo ${{ env.OUTPUT_PATH }}
|
ls results
|
||||||
ls ${{ env.OUTPUT_PATH }}
|
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py results
|
||||||
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_results.py ${{ env.OUTPUT_PATH }}
|
|
||||||
|
llm-harness-summary-nightly:
|
||||||
|
if: ${{github.event_name == 'schedule' || github.event_name == 'pull_request'}}
|
||||||
|
needs: [set-matrix, llm-harness-evalution]
|
||||||
|
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
- name: Set up Python 3.9
|
||||||
|
uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: 3.9
|
||||||
|
- name: Install dependencies
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
pip install --upgrade pip
|
||||||
|
pip install jsonlines pytablewriter regex
|
||||||
|
|
||||||
|
- name: Set output path
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
DATE=$(date +%Y-%m-%d)
|
||||||
|
OUTPUT_PATH="results_$DATE"
|
||||||
|
echo "OUTPUT_PATH=$OUTPUT_PATH" >> $GITHUB_ENV
|
||||||
|
NIGHTLY_FOLDER="/home/arda/harness-action-runners/nightly-accuracy-data"
|
||||||
|
echo "NIGHTLY_FOLDER=$NIGHTLY_FOLDER" >> $GITHUB_ENV
|
||||||
|
PR_FOLDER="/home/arda/harness-action-runners/pr-accuracy-data"
|
||||||
|
echo "PR_FOLDER=$PR_FOLDER" >> $GITHUB_ENV
|
||||||
|
|
||||||
|
- name: Download all results for nightly run
|
||||||
|
if: github.event_name == 'schedule'
|
||||||
|
uses: actions/download-artifact@v3
|
||||||
|
with:
|
||||||
|
name: harness_results
|
||||||
|
path: ${{ env.NIGHTLY_FOLDER}}/${{ env.OUTPUT_PATH }}
|
||||||
|
|
||||||
|
- name: Download all results for pr run
|
||||||
|
if: github.event_name == 'pull_request'
|
||||||
|
uses: actions/download-artifact@v3
|
||||||
|
with:
|
||||||
|
name: harness_results
|
||||||
|
path: ${{ env.PR_FOLDER}}/${{ env.OUTPUT_PATH }}
|
||||||
|
|
||||||
|
- name: Summarize the results for nightly run
|
||||||
|
if: github.event_name == 'schedule'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
ls /home/arda/harness-action-runners/nightly-accuracy-data/${{ env.OUTPUT_PATH }}
|
||||||
|
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py ${{ env.NIGHTLY_FOLDER}}/${{ env.OUTPUT_PATH }} ${{ env.NIGHTLY_FOLDER}}
|
||||||
|
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/harness_csv_to_html.py -f ${{ env.NIGHTLY_FOLDER}}
|
||||||
|
|
||||||
|
- name: Summarize the results for pull request
|
||||||
|
if: github.event_name == 'pull_request'
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
ls /home/arda/harness-action-runners/pr-accuracy-data/${{ env.OUTPUT_PATH }}
|
||||||
|
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py ${{ env.PR_FOLDER}}/${{ env.OUTPUT_PATH }} ${{ env.PR_FOLDER}}
|
||||||
|
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/harness_csv_to_html.py -f ${{ env.PR_FOLDER}}
|
||||||
204
python/llm/dev/benchmark/harness/harness_csv_to_html.py
Normal file
204
python/llm/dev/benchmark/harness/harness_csv_to_html.py
Normal file
|
|
@ -0,0 +1,204 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
# Python program to convert CSV to HTML Table
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import argparse
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
def highlight_vals(val, max=3.0, color1='red', color2='green'):
|
||||||
|
if isinstance(val, float):
|
||||||
|
if val > max:
|
||||||
|
return 'background-color: %s' % color2
|
||||||
|
elif val <= -max:
|
||||||
|
return 'background-color: %s' % color1
|
||||||
|
else:
|
||||||
|
return ''
|
||||||
|
|
||||||
|
def nonzero_min(lst):
|
||||||
|
non_zero_lst = [num for num in lst if num > 0.0]
|
||||||
|
return min(non_zero_lst) if non_zero_lst else None
|
||||||
|
|
||||||
|
def is_diffs_within_normal_range(diff1, diff2, diff3, threshold=5.0):
|
||||||
|
return not any(diff < (-threshold) for diff in diff1 + diff2 + diff3 if isinstance(diff, float))
|
||||||
|
|
||||||
|
def add_to_dict(dict, key, value):
|
||||||
|
if key not in dict:
|
||||||
|
dict[key] = []
|
||||||
|
dict[key].append(value)
|
||||||
|
|
||||||
|
def best_in_dict(dict, key, value):
|
||||||
|
if key in dict:
|
||||||
|
best_value = nonzero_min(dict[key])
|
||||||
|
if best_value < value or value <= 0.0:
|
||||||
|
return best_value
|
||||||
|
return value
|
||||||
|
return value
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
|
||||||
|
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
|
||||||
|
help="The directory which stores the .csv file", default="/home/arda/yibo/BigDL/python/llm/dev/benchmark/harness")
|
||||||
|
parser.add_argument("-t", "--threshold", type=float, dest="threshold",
|
||||||
|
help="the threshold of highlight values", default=3.0)
|
||||||
|
parser.add_argument("-b", "--baseline_path", type=str, dest="baseline_path",
|
||||||
|
help="the baseline path which stores the baseline.csv file")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
csv_files = []
|
||||||
|
for file_name in os.listdir(args.folder_path):
|
||||||
|
file_path = os.path.join(args.folder_path, file_name)
|
||||||
|
if os.path.isfile(file_path) and file_name.endswith(".csv"):
|
||||||
|
csv_files.append(file_path)
|
||||||
|
csv_files.sort(reverse=True)
|
||||||
|
|
||||||
|
highlight_threshold=args.threshold
|
||||||
|
|
||||||
|
latest_csv = pd.read_csv(csv_files[0], index_col=0)
|
||||||
|
daily_html=csv_files[0].split(".")[0]+".html"
|
||||||
|
|
||||||
|
diffs_within_normal_range = True
|
||||||
|
|
||||||
|
if len(csv_files)>1:
|
||||||
|
if args.baseline_path:
|
||||||
|
previous_csv = pd.read_csv(args.baseline_path, index_col=0)
|
||||||
|
else:
|
||||||
|
previous_csv = pd.read_csv(csv_files[1], index_col=0)
|
||||||
|
|
||||||
|
last1=['']*len(latest_csv.index)
|
||||||
|
diff1=['']*len(latest_csv.index)
|
||||||
|
last2=['']*len(latest_csv.index)
|
||||||
|
diff2=['']*len(latest_csv.index)
|
||||||
|
last3=['']*len(latest_csv.index)
|
||||||
|
diff3=['']*len(latest_csv.index)
|
||||||
|
|
||||||
|
best_last1=['']*len(latest_csv.index)
|
||||||
|
best_diff1=['']*len(latest_csv.index)
|
||||||
|
best_last2=['']*len(latest_csv.index)
|
||||||
|
best_diff2=['']*len(latest_csv.index)
|
||||||
|
best_last3=['']*len(latest_csv.index)
|
||||||
|
best_diff3=['']*len(latest_csv.index)
|
||||||
|
|
||||||
|
Arc='Arc'
|
||||||
|
TruthfulQA='TruthfulQA'
|
||||||
|
Winogrande='Winogrande'
|
||||||
|
|
||||||
|
csv_dict = {}
|
||||||
|
for csv_file in csv_files:
|
||||||
|
current_csv = pd.read_csv(csv_file, index_col=0)
|
||||||
|
for current_csv_ind,current_csv_row in current_csv.iterrows():
|
||||||
|
current_csv_model=current_csv_row['Model'].strip()
|
||||||
|
current_csv_precision=current_csv_row['Precision'].strip()
|
||||||
|
current_csv_model_arc=current_csv_model+'-'+current_csv_precision+'-'+'Arc'
|
||||||
|
current_csv_model_truthfulqa=current_csv_model+'-'+current_csv_precision+'-'+'TruthfulQA'
|
||||||
|
current_csv_model_winogrande=current_csv_model+'-'+current_csv_precision+'-'+'Winogrande'
|
||||||
|
add_to_dict(csv_dict, current_csv_model_arc, current_csv_row[Arc])
|
||||||
|
add_to_dict(csv_dict, current_csv_model_truthfulqa, current_csv_row[TruthfulQA])
|
||||||
|
add_to_dict(csv_dict, current_csv_model_winogrande, current_csv_row[Winogrande])
|
||||||
|
|
||||||
|
for latest_csv_ind,latest_csv_row in latest_csv.iterrows():
|
||||||
|
|
||||||
|
latest_csv_model=latest_csv_row['Model'].strip()
|
||||||
|
latest_csv_precision=latest_csv_row['Precision'].strip()
|
||||||
|
latest_arc=latest_csv_row[Arc]
|
||||||
|
latest_truthfulqa=latest_csv_row[TruthfulQA]
|
||||||
|
latest_winogrande=latest_csv_row[Winogrande]
|
||||||
|
|
||||||
|
key1=latest_csv_model+'-'+latest_csv_precision+'-'+'Arc'
|
||||||
|
key2=latest_csv_model+'-'+latest_csv_precision+'-'+'TruthfulQA'
|
||||||
|
key3=latest_csv_model+'-'+latest_csv_precision+'-'+'Winogrande'
|
||||||
|
|
||||||
|
best_last1_value=best_in_dict(csv_dict, key1, latest_arc)
|
||||||
|
best_last2_value=best_in_dict(csv_dict, key2, latest_truthfulqa)
|
||||||
|
best_last3_value=best_in_dict(csv_dict, key3, latest_winogrande)
|
||||||
|
|
||||||
|
best_last1[latest_csv_ind]=best_last1_value
|
||||||
|
best_diff1[latest_csv_ind]=round((best_last1_value-latest_arc)*100/best_last1_value,2)
|
||||||
|
best_last2[latest_csv_ind]=best_last2_value
|
||||||
|
best_diff2[latest_csv_ind]=round((best_last2_value-latest_truthfulqa)*100/best_last2_value,2)
|
||||||
|
best_last3[latest_csv_ind]=best_last3_value
|
||||||
|
best_diff3[latest_csv_ind]=round((best_last3_value-latest_winogrande)*100/best_last3_value,2)
|
||||||
|
|
||||||
|
in_previous_flag=False
|
||||||
|
|
||||||
|
for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
|
||||||
|
|
||||||
|
previous_csv_model=previous_csv_row['Model'].strip()
|
||||||
|
previous_csv_precision=previous_csv_row['Precision'].strip()
|
||||||
|
|
||||||
|
if latest_csv_model==previous_csv_model and latest_csv_precision==previous_csv_precision:
|
||||||
|
|
||||||
|
previous_arc=previous_csv_row[Arc]
|
||||||
|
previous_truthfulqa=previous_csv_row[TruthfulQA]
|
||||||
|
previous_winogrande=previous_csv_row[Winogrande]
|
||||||
|
if previous_arc > 0.0 and previous_truthfulqa > 0.0 and previous_winogrande > 0.0:
|
||||||
|
last1[latest_csv_ind]=previous_arc
|
||||||
|
diff1[latest_csv_ind]=round((previous_arc-latest_arc)*100/previous_arc,2)
|
||||||
|
last2[latest_csv_ind]=previous_truthfulqa
|
||||||
|
diff2[latest_csv_ind]=round((previous_truthfulqa-latest_truthfulqa)*100/previous_truthfulqa,2)
|
||||||
|
last3[latest_csv_ind]=previous_winogrande
|
||||||
|
diff3[latest_csv_ind]=round((previous_winogrande-latest_winogrande)*100/previous_winogrande,2)
|
||||||
|
in_previous_flag=True
|
||||||
|
|
||||||
|
if not in_previous_flag:
|
||||||
|
last1[latest_csv_ind]=pd.NA
|
||||||
|
diff1[latest_csv_ind]=pd.NA
|
||||||
|
last2[latest_csv_ind]=pd.NA
|
||||||
|
diff2[latest_csv_ind]=pd.NA
|
||||||
|
last3[latest_csv_ind]=pd.NA
|
||||||
|
diff3[latest_csv_ind]=pd.NA
|
||||||
|
|
||||||
|
latest_csv.insert(loc=5,column='last1',value=last1)
|
||||||
|
latest_csv.insert(loc=6,column='diff1(%)',value=diff1)
|
||||||
|
latest_csv.insert(loc=7,column='last2',value=last2)
|
||||||
|
latest_csv.insert(loc=8,column='diff2(%)',value=diff2)
|
||||||
|
latest_csv.insert(loc=9,column='last3',value=last3)
|
||||||
|
latest_csv.insert(loc=10,column='diff3(%)',value=diff3)
|
||||||
|
|
||||||
|
latest_csv.insert(loc=11,column='best 1',value=best_last1)
|
||||||
|
latest_csv.insert(loc=12,column='best diff1(%)',value=best_diff1)
|
||||||
|
latest_csv.insert(loc=13,column='best 2',value=best_last2)
|
||||||
|
latest_csv.insert(loc=14,column='best diff2(%)',value=best_diff2)
|
||||||
|
latest_csv.insert(loc=15,column='best 3',value=best_last3)
|
||||||
|
latest_csv.insert(loc=16,column='best diff3(%)',value=best_diff3)
|
||||||
|
|
||||||
|
diffs_within_normal_range = is_diffs_within_normal_range(diff1, diff2, diff3, threshold=highlight_threshold)
|
||||||
|
|
||||||
|
subset1=['diff1(%)','diff2(%)','diff3(%)' ]
|
||||||
|
subset2=['best diff1(%)','best diff2(%)','best diff3(%)']
|
||||||
|
|
||||||
|
columns={'Arc': '{:.2f}', 'TruthfulQA': '{:.2f}', 'Winogrande': '{:.2f}', 'last1': '{:.2f}', 'diff1(%)': '{:.2f}',
|
||||||
|
'last2': '{:.2f}', 'diff2(%)': '{:.2f}', 'last3': '{:.2f}', 'diff3(%)': '{:.2f}',
|
||||||
|
'best 1': '{:.2f}', 'best diff1(%)': '{:.2f}', 'best 2': '{:.2f}', 'best diff2(%)': '{:.2f}', 'best 3': '{:.2f}', 'best diff3(%)': '{:.2f}'}
|
||||||
|
|
||||||
|
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, color1='red', color2='green'), subset=subset1)
|
||||||
|
styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=3.0, color1='yellow'), subset=subset2)
|
||||||
|
html_output = styled_df.set_table_attributes("border=1").render()
|
||||||
|
|
||||||
|
with open(daily_html, 'w') as f:
|
||||||
|
f.write(html_output)
|
||||||
|
else:
|
||||||
|
latest_csv.to_html(daily_html)
|
||||||
|
|
||||||
|
if args.baseline_path and not diffs_within_normal_range:
|
||||||
|
print("The diffs are outside the normal range: %" + str(highlight_threshold))
|
||||||
|
return 1
|
||||||
|
return 0
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
sys.exit(main())
|
||||||
141
python/llm/dev/benchmark/harness/make_table_and_csv.py
Normal file
141
python/llm/dev/benchmark/harness/make_table_and_csv.py
Normal file
|
|
@ -0,0 +1,141 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
python make_table_results.py <input_dir>
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from pytablewriter import MarkdownTableWriter, LatexTableWriter
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
import sys
|
||||||
|
import csv
|
||||||
|
import datetime
|
||||||
|
from harness_to_leaderboard import task_to_metric
|
||||||
|
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def make_table(result_dict):
|
||||||
|
"""Generate table of results."""
|
||||||
|
md_writer = MarkdownTableWriter()
|
||||||
|
latex_writer = LatexTableWriter()
|
||||||
|
md_writer.headers = ["Model", "Precision", "Arc", "Hellaswag", "MMLU", "TruthfulQA","Winogrande", "GSM8K"]
|
||||||
|
latex_writer.headers = ["Model", "Precision", "Arc", "Hellaswag", "MMLU", "TruthfulQA","Winogrande", "GSM8K"]
|
||||||
|
|
||||||
|
tasks = ["arc", "hellaswag", "mmlu", "truthfulqa", "winogrande", "gsm8k"]
|
||||||
|
values = []
|
||||||
|
for model, model_results in result_dict.items():
|
||||||
|
for precision, prec_results in model_results.items():
|
||||||
|
value = [model, precision]
|
||||||
|
for task in tasks:
|
||||||
|
|
||||||
|
task_results = prec_results.get(task, None)
|
||||||
|
if task_results is None:
|
||||||
|
value.append("")
|
||||||
|
else:
|
||||||
|
m = task_to_metric[task]
|
||||||
|
results = task_results["results"]
|
||||||
|
if len(results) > 1:
|
||||||
|
result = results[task]
|
||||||
|
else:
|
||||||
|
result = list(results.values())[0]
|
||||||
|
value.append("%.2f" % (result[m] * 100))
|
||||||
|
values.append(value)
|
||||||
|
model = ""
|
||||||
|
precision = ""
|
||||||
|
|
||||||
|
md_writer.value_matrix = values
|
||||||
|
latex_writer.value_matrix = values
|
||||||
|
|
||||||
|
# todo: make latex table look good
|
||||||
|
# print(latex_writer.dumps())
|
||||||
|
|
||||||
|
return md_writer.dumps()
|
||||||
|
|
||||||
|
def make_csv(result_dict, output_path=None):
|
||||||
|
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
|
||||||
|
file_name = f'results_{current_date}.csv'
|
||||||
|
full_path = os.path.join(output_path, file_name) if output_path else file_name
|
||||||
|
print('Writing to', full_path)
|
||||||
|
file_name = full_path
|
||||||
|
headers = ["Index", "Model", "Precision", "Arc", "TruthfulQA", "Winogrande"]
|
||||||
|
|
||||||
|
with open(file_name, mode='w', newline='') as csv_file:
|
||||||
|
writer = csv.writer(csv_file)
|
||||||
|
writer.writerow(headers)
|
||||||
|
index = 0
|
||||||
|
for model, model_results in result_dict.items():
|
||||||
|
for precision, prec_results in model_results.items():
|
||||||
|
row = [index, model, precision]
|
||||||
|
for task in headers[3:]:
|
||||||
|
task_results = prec_results.get(task.lower(), None)
|
||||||
|
if task_results is None:
|
||||||
|
row.append("")
|
||||||
|
else:
|
||||||
|
m = task_to_metric[task.lower()]
|
||||||
|
results = task_results["results"]
|
||||||
|
result = list(results.values())[0] if len(results) == 1 else results[task.lower()]
|
||||||
|
row.append("%.2f" % (result[m] * 100))
|
||||||
|
writer.writerow(row)
|
||||||
|
index += 1
|
||||||
|
|
||||||
|
|
||||||
|
def merge_results(path):
|
||||||
|
# loop dirs and subdirs in results dir
|
||||||
|
# for each dir, load json files
|
||||||
|
print('Read from', path)
|
||||||
|
merged_results = dict()
|
||||||
|
for dirpath, dirnames, filenames in os.walk(sys.argv[1]):
|
||||||
|
# skip dirs without files
|
||||||
|
if not filenames:
|
||||||
|
continue
|
||||||
|
for filename in sorted([f for f in filenames if f.endswith("result.json")]):
|
||||||
|
path = os.path.join(dirpath, filename)
|
||||||
|
model, device, precision, task = dirpath.split('/')[-4:]
|
||||||
|
with open(path, "r") as f:
|
||||||
|
result_dict = json.load(f)
|
||||||
|
if model not in merged_results:
|
||||||
|
merged_results[model] = dict()
|
||||||
|
if precision not in merged_results[model]:
|
||||||
|
merged_results[model][precision] = dict()
|
||||||
|
merged_results[model][precision][task] = result_dict
|
||||||
|
return merged_results
|
||||||
|
|
||||||
|
|
||||||
|
def main(*args):
|
||||||
|
if len(args) > 1:
|
||||||
|
input_path = args[1]
|
||||||
|
else:
|
||||||
|
raise ValueError("Input path is required")
|
||||||
|
|
||||||
|
if len(args) > 2:
|
||||||
|
output_path = args[2] # use the third argument as the output path
|
||||||
|
else:
|
||||||
|
output_path = "./" # default to current directory
|
||||||
|
|
||||||
|
merged_results = merge_results(input_path)
|
||||||
|
make_csv(merged_results, output_path)
|
||||||
|
print(make_table(merged_results))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# when running from the harness, the first argument is the script name
|
||||||
|
# you must name the second argument and the third argument(optional) to be the input_dir and output_dir
|
||||||
|
main(*sys.argv)
|
||||||
|
|
@ -23,6 +23,8 @@ from pytablewriter import MarkdownTableWriter, LatexTableWriter
|
||||||
import os
|
import os
|
||||||
import json
|
import json
|
||||||
import sys
|
import sys
|
||||||
|
import csv
|
||||||
|
import datetime
|
||||||
from harness_to_leaderboard import task_to_metric
|
from harness_to_leaderboard import task_to_metric
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -67,10 +69,39 @@ def make_table(result_dict):
|
||||||
|
|
||||||
return md_writer.dumps()
|
return md_writer.dumps()
|
||||||
|
|
||||||
|
def make_csv(result_dict, output_path=None):
|
||||||
|
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
|
||||||
|
file_name = f'results_{current_date}.csv'
|
||||||
|
full_path = os.path.join(output_path, file_name) if output_path else file_name
|
||||||
|
print('Writing to', full_path)
|
||||||
|
file_name = full_path
|
||||||
|
headers = ["Index", "Model", "Precision", "Arc", "TruthfulQA", "Winogrande"]
|
||||||
|
|
||||||
|
with open(file_name, mode='w', newline='') as csv_file:
|
||||||
|
writer = csv.writer(csv_file)
|
||||||
|
writer.writerow(headers)
|
||||||
|
index = 0
|
||||||
|
for model, model_results in result_dict.items():
|
||||||
|
for precision, prec_results in model_results.items():
|
||||||
|
row = [index, model, precision]
|
||||||
|
for task in headers[3:]:
|
||||||
|
task_results = prec_results.get(task.lower(), None)
|
||||||
|
if task_results is None:
|
||||||
|
row.append("")
|
||||||
|
else:
|
||||||
|
m = task_to_metric[task.lower()]
|
||||||
|
results = task_results["results"]
|
||||||
|
result = list(results.values())[0] if len(results) == 1 else results[task.lower()]
|
||||||
|
row.append("%.2f" % (result[m] * 100))
|
||||||
|
writer.writerow(row)
|
||||||
|
index += 1
|
||||||
|
|
||||||
def merge_results(path):
|
|
||||||
|
def merge_results(args):
|
||||||
# loop dirs and subdirs in results dir
|
# loop dirs and subdirs in results dir
|
||||||
# for each dir, load json files
|
# for each dir, load json files
|
||||||
|
path = args[1]
|
||||||
|
print('Read from', path)
|
||||||
merged_results = dict()
|
merged_results = dict()
|
||||||
for dirpath, dirnames, filenames in os.walk(sys.argv[1]):
|
for dirpath, dirnames, filenames in os.walk(sys.argv[1]):
|
||||||
# skip dirs without files
|
# skip dirs without files
|
||||||
|
|
@ -86,15 +117,17 @@ def merge_results(path):
|
||||||
if precision not in merged_results[model]:
|
if precision not in merged_results[model]:
|
||||||
merged_results[model][precision] = dict()
|
merged_results[model][precision] = dict()
|
||||||
merged_results[model][precision][task] = result_dict
|
merged_results[model][precision][task] = result_dict
|
||||||
|
# args[2] is the output path
|
||||||
|
make_csv(merged_results, args[2])
|
||||||
return merged_results
|
return merged_results
|
||||||
|
|
||||||
|
|
||||||
def main(*args):
|
def main(*args):
|
||||||
|
merged_results = merge_results(args)
|
||||||
merged_results = merge_results(args[0])
|
print(make_table(merged_results))
|
||||||
print(make_table(merged_results))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
# when running from the harness, the first argument is the script name
|
||||||
|
# you must name the second argument and the third argument to be the input_dir and output_dir
|
||||||
main(*sys.argv)
|
main(*sys.argv)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue