add lowbit_path for generate.py, fix npu_model (#12077)
				
					
				
			* add `lowbit_path` for `generate.py`, fix `npu_model` * update `README.md`
This commit is contained in:
		
							parent
							
								
									d703e4f127
								
							
						
					
					
						commit
						b4b8c3e495
					
				
					 3 changed files with 27 additions and 7 deletions
				
			
		| 
						 | 
				
			
			@ -58,6 +58,7 @@ python ./generate.py
 | 
			
		|||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Phi-3-vision model (e.g. `microsoft/Phi-3-vision-128k-instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'microsoft/Phi-3-vision-128k-instruct'`, and more verified models please see the list in [Verified Models](#verified-models).
 | 
			
		||||
- `--lowbit-path LOWBIT_MODEL_PATH`: argument defining the path to save/load lowbit version of the model. If it is an empty string, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded. If it is an existing path, the lowbit model in `LOWBIT_MODEL_PATH` will be loaded. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, and the converted lowbit version will be saved into `LOWBIT_MODEL_PATH`. It is default to be `''`, i.e. an empty string.
 | 
			
		||||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -29,6 +29,11 @@ if __name__ == '__main__':
 | 
			
		|||
    parser.add_argument('--repo-id-or-model-path', type=str, default="microsoft/Phi-3-vision-128k-instruct",
 | 
			
		||||
                        help='The huggingface repo id for the phi-3-vision model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument("--lowbit-path", type=str,
 | 
			
		||||
        default="",
 | 
			
		||||
        help='The path to the lowbit model folder, leave blank if you do not want to save. \
 | 
			
		||||
            If path not exists, lowbit model will be saved there. \
 | 
			
		||||
            Else, lowbit model will be loaded.')
 | 
			
		||||
    parser.add_argument('--image-url-or-path', type=str,
 | 
			
		||||
                        default="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg",
 | 
			
		||||
                        help='The URL or path to the image to infer')
 | 
			
		||||
| 
						 | 
				
			
			@ -49,12 +54,27 @@ if __name__ == '__main__':
 | 
			
		|||
    # You could also try `'sym_int8'` for INT8
 | 
			
		||||
    # `_attn_implementation="eager"` is required for phi-3-vision
 | 
			
		||||
    # `modules_to_not_convert=["vision_embed_tokens"]` and `model = model.half()` are for acceleration and are optional
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 load_in_low_bit=args.load_in_low_bit,
 | 
			
		||||
                                                 _attn_implementation="eager",
 | 
			
		||||
                                                 modules_to_not_convert=["vision_embed_tokens"])
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    if not args.lowbit_path or not os.path.exists(args.lowbit_path):
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(
 | 
			
		||||
            model_path,
 | 
			
		||||
            trust_remote_code=True,
 | 
			
		||||
            load_in_low_bit=args.load_in_low_bit,
 | 
			
		||||
            _attn_implementation="eager",
 | 
			
		||||
            modules_to_not_convert=["vision_embed_tokens"]
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.load_low_bit(
 | 
			
		||||
            args.lowbit_path,
 | 
			
		||||
            trust_remote_code=True,
 | 
			
		||||
            bigdl_transformers_low_bit=args.load_in_low_bit,
 | 
			
		||||
            attn_implementation="eager",
 | 
			
		||||
            modules_to_not_convert=["vision_embed_tokens"]
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    if args.lowbit_path and not os.path.exists(args.lowbit_path):
 | 
			
		||||
        model.save_low_bit(args.lowbit_path)
 | 
			
		||||
 | 
			
		||||
    # Load processor
 | 
			
		||||
    processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -207,7 +207,6 @@ class _BaseAutoModelClass:
 | 
			
		|||
        ignore_argument(kwargs, "lightweight_bmm")
 | 
			
		||||
        ignore_argument(kwargs, "cpu_embedding")
 | 
			
		||||
        ignore_argument(kwargs, "embedding_qtype")
 | 
			
		||||
        ignore_argument(kwargs, "modules_to_not_convert")
 | 
			
		||||
        ignore_argument(kwargs, "speculative")
 | 
			
		||||
        ignore_argument(kwargs, "pipeline_parallel_stages")
 | 
			
		||||
        optimize_model = kwargs.pop("optimize_model", False)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue