NPU Baichuan2 Multi- Process example (#11928)
This commit is contained in:
parent
e211a5b076
commit
b4b6ddf73c
3 changed files with 1329 additions and 0 deletions
|
|
@ -0,0 +1,107 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
def get_prompt(message: str, chat_history: list[tuple[str, str]],
|
||||||
|
system_prompt: str) -> str:
|
||||||
|
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
|
||||||
|
# The first user input is _not_ stripped
|
||||||
|
do_strip = False
|
||||||
|
for user_input, response in chat_history:
|
||||||
|
user_input = user_input.strip() if do_strip else user_input
|
||||||
|
do_strip = True
|
||||||
|
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
|
||||||
|
message = message.strip() if do_strip else message
|
||||||
|
texts.append(f'{message} [/INST]')
|
||||||
|
return ''.join(texts)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Predict Tokens using `generate()` API for npu model"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--repo-id-or-model-path",
|
||||||
|
type=str,
|
||||||
|
default="meta-llama/Llama-2-7b-chat-hf",
|
||||||
|
help="The huggingface repo id for the Llama2 model to be downloaded"
|
||||||
|
", or the path to the huggingface checkpoint folder",
|
||||||
|
)
|
||||||
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
|
||||||
|
parser.add_argument("--max-output-len", type=int, default=1024)
|
||||||
|
parser.add_argument("--max-prompt-len", type=int, default=768)
|
||||||
|
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||||
|
parser.add_argument("--intra-pp", type=int, default=2)
|
||||||
|
parser.add_argument("--inter-pp", type=int, default=2)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_path,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
trust_remote_code=True,
|
||||||
|
attn_implementation="eager",
|
||||||
|
load_in_low_bit="sym_int4",
|
||||||
|
enable_mp=True,
|
||||||
|
max_output_len=args.max_output_len,
|
||||||
|
max_prompt_len=args.max_prompt_len,
|
||||||
|
intra_pp=args.intra_pp,
|
||||||
|
inter_pp=args.inter_pp,
|
||||||
|
transpose_value_cache=not args.disable_transpose_value_cache,
|
||||||
|
)
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
|
||||||
|
DEFAULT_SYSTEM_PROMPT = """\
|
||||||
|
"""
|
||||||
|
|
||||||
|
print("-" * 80)
|
||||||
|
print("done")
|
||||||
|
with torch.inference_mode():
|
||||||
|
print("finish to load")
|
||||||
|
for i in range(5):
|
||||||
|
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
||||||
|
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
print("input length:", len(_input_ids[0]))
|
||||||
|
st = time.time()
|
||||||
|
output = model.generate(
|
||||||
|
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
|
||||||
|
)
|
||||||
|
end = time.time()
|
||||||
|
print(f"Inference time: {end-st} s")
|
||||||
|
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
||||||
|
print("-" * 20, "Input", "-" * 20)
|
||||||
|
print(input_str)
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||||
|
print("-" * 20, "Output", "-" * 20)
|
||||||
|
print(output_str)
|
||||||
|
|
||||||
|
print("-" * 80)
|
||||||
|
print("done")
|
||||||
|
print("success shut down")
|
||||||
1200
python/llm/src/ipex_llm/transformers/npu_models/baichuan_mp.py
Normal file
1200
python/llm/src/ipex_llm/transformers/npu_models/baichuan_mp.py
Normal file
File diff suppressed because it is too large
Load diff
|
|
@ -124,3 +124,25 @@ def optimize_llm(
|
||||||
prefill_runner=prefill_runner, decode_runner=decode_runner
|
prefill_runner=prefill_runner, decode_runner=decode_runner
|
||||||
)
|
)
|
||||||
convert_forward(model, module.MiniCPMModel, minicpm_model_forward)
|
convert_forward(model, module.MiniCPMModel, minicpm_model_forward)
|
||||||
|
elif model.config.model_type == "baichuan":
|
||||||
|
from ipex_llm.transformers.npu_models.baichuan_mp import gen_baichuan_fused_model_forward
|
||||||
|
from ipex_llm.transformers.npu_models.baichuan_mp import DecodeRunner, PrefillRunner
|
||||||
|
decode_runner = DecodeRunner(
|
||||||
|
model,
|
||||||
|
max_seq_len=max_output_len,
|
||||||
|
inter_pp=inter_pp,
|
||||||
|
intra_pp=intra_pp,
|
||||||
|
transpose_value_cache=transpose_value_cache,
|
||||||
|
)
|
||||||
|
prefill_runner = PrefillRunner(
|
||||||
|
model,
|
||||||
|
max_output_len=max_output_len,
|
||||||
|
max_prompt_len=max_prompt_len,
|
||||||
|
transpose_value_cache=transpose_value_cache,
|
||||||
|
)
|
||||||
|
baichuan_model_forward = gen_baichuan_fused_model_forward(
|
||||||
|
prefill_runner=prefill_runner, decode_runner=decode_runner
|
||||||
|
)
|
||||||
|
modeling_module_name = model.__class__.__module__
|
||||||
|
module = importlib.import_module(modeling_module_name)
|
||||||
|
convert_forward(model, module.BaichuanModel, baichuan_model_forward)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue