NPU Baichuan2 Multi- Process example (#11928)
This commit is contained in:
		
							parent
							
								
									e211a5b076
								
							
						
					
					
						commit
						b4b6ddf73c
					
				
					 3 changed files with 1329 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -0,0 +1,107 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
def get_prompt(message: str, chat_history: list[tuple[str, str]],
 | 
			
		||||
               system_prompt: str) -> str:
 | 
			
		||||
    texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
 | 
			
		||||
    # The first user input is _not_ stripped
 | 
			
		||||
    do_strip = False
 | 
			
		||||
    for user_input, response in chat_history:
 | 
			
		||||
        user_input = user_input.strip() if do_strip else user_input
 | 
			
		||||
        do_strip = True
 | 
			
		||||
        texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
 | 
			
		||||
    message = message.strip() if do_strip else message
 | 
			
		||||
    texts.append(f'{message} [/INST]')
 | 
			
		||||
    return ''.join(texts)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    parser = argparse.ArgumentParser(
 | 
			
		||||
        description="Predict Tokens using `generate()` API for npu model"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--repo-id-or-model-path",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="meta-llama/Llama-2-7b-chat-hf",
 | 
			
		||||
        help="The huggingface repo id for the Llama2 model to be downloaded"
 | 
			
		||||
        ", or the path to the huggingface checkpoint folder",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
			
		||||
    parser.add_argument("--max-output-len", type=int, default=1024)
 | 
			
		||||
    parser.add_argument("--max-prompt-len", type=int, default=768)
 | 
			
		||||
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--intra-pp", type=int, default=2)
 | 
			
		||||
    parser.add_argument("--inter-pp", type=int, default=2)
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(
 | 
			
		||||
        model_path,
 | 
			
		||||
        torch_dtype=torch.bfloat16,
 | 
			
		||||
        trust_remote_code=True,
 | 
			
		||||
        attn_implementation="eager",
 | 
			
		||||
        load_in_low_bit="sym_int4",
 | 
			
		||||
        enable_mp=True,
 | 
			
		||||
        max_output_len=args.max_output_len,
 | 
			
		||||
        max_prompt_len=args.max_prompt_len,
 | 
			
		||||
        intra_pp=args.intra_pp,
 | 
			
		||||
        inter_pp=args.inter_pp,
 | 
			
		||||
        transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    DEFAULT_SYSTEM_PROMPT = """\
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        print("finish to load")
 | 
			
		||||
        for i in range(5):
 | 
			
		||||
            prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
 | 
			
		||||
            _input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
            print("input length:", len(_input_ids[0]))
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
            input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print(input_str)
 | 
			
		||||
            output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            print(output_str)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    print("success shut down")
 | 
			
		||||
							
								
								
									
										1200
									
								
								python/llm/src/ipex_llm/transformers/npu_models/baichuan_mp.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1200
									
								
								python/llm/src/ipex_llm/transformers/npu_models/baichuan_mp.py
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							| 
						 | 
				
			
			@ -124,3 +124,25 @@ def optimize_llm(
 | 
			
		|||
            prefill_runner=prefill_runner, decode_runner=decode_runner
 | 
			
		||||
        )
 | 
			
		||||
        convert_forward(model, module.MiniCPMModel, minicpm_model_forward)
 | 
			
		||||
    elif model.config.model_type == "baichuan":
 | 
			
		||||
        from ipex_llm.transformers.npu_models.baichuan_mp import gen_baichuan_fused_model_forward
 | 
			
		||||
        from ipex_llm.transformers.npu_models.baichuan_mp import DecodeRunner, PrefillRunner
 | 
			
		||||
        decode_runner = DecodeRunner(
 | 
			
		||||
            model,
 | 
			
		||||
            max_seq_len=max_output_len,
 | 
			
		||||
            inter_pp=inter_pp,
 | 
			
		||||
            intra_pp=intra_pp,
 | 
			
		||||
            transpose_value_cache=transpose_value_cache,
 | 
			
		||||
        )
 | 
			
		||||
        prefill_runner = PrefillRunner(
 | 
			
		||||
            model,
 | 
			
		||||
            max_output_len=max_output_len,
 | 
			
		||||
            max_prompt_len=max_prompt_len,
 | 
			
		||||
            transpose_value_cache=transpose_value_cache,
 | 
			
		||||
        )
 | 
			
		||||
        baichuan_model_forward = gen_baichuan_fused_model_forward(
 | 
			
		||||
                    prefill_runner=prefill_runner, decode_runner=decode_runner
 | 
			
		||||
                )
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        convert_forward(model, module.BaichuanModel, baichuan_model_forward)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue