[WIP] LLM: add kv cache support for internlm. (#9036)
* LLM: add kv cache support for internlm * add internlm apply_rotary_pos_emb * fix. * fix style.
This commit is contained in:
parent
975da86e00
commit
b4a1266ef0
3 changed files with 177 additions and 1 deletions
|
|
@ -272,4 +272,12 @@ def optimize(model):
|
|||
transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXAttention,
|
||||
gptneox_attention_forward
|
||||
)
|
||||
elif model.config.model_type == "internlm":
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from bigdl.llm.transformers.models.internlm import internlm_attention_forward
|
||||
convert_forward(model,
|
||||
module.InternLMAttention,
|
||||
internlm_attention_forward
|
||||
)
|
||||
return model
|
||||
|
|
|
|||
168
python/llm/src/bigdl/llm/transformers/models/internlm.py
Normal file
168
python/llm/src/bigdl/llm/transformers/models/internlm.py
Normal file
|
|
@ -0,0 +1,168 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# Some parts of this file is adapted from
|
||||
# https://huggingface.co/internlm/internlm-chat-7b/blob/659ed911eec1e26810f9854f19c5ec27854e9cf3/modeling_internlm.py
|
||||
# which is licensed under Apache License 2.0:
|
||||
#
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" PyTorch InternLM model."""
|
||||
import math
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb
|
||||
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
|
||||
|
||||
def internlm_attention_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor]=None,
|
||||
position_ids: Optional[torch.LongTensor]=None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]]=None,
|
||||
output_attentions: bool=False,
|
||||
use_cache: bool=False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
query_states = self.q_proj(hidden_states) \
|
||||
.view(bsz, q_len, self.num_heads, self.head_dim) \
|
||||
.transpose(1, 2)
|
||||
key_states = self.k_proj(hidden_states) \
|
||||
.view(bsz, q_len, self.num_heads, self.head_dim) \
|
||||
.transpose(1, 2)
|
||||
value_states = self.v_proj(hidden_states) \
|
||||
.view(bsz, q_len, self.num_heads, self.head_dim) \
|
||||
.transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(
|
||||
query_states,
|
||||
key_states,
|
||||
cos,
|
||||
sin,
|
||||
position_ids,
|
||||
"internlm"
|
||||
)
|
||||
# [bsz, nh, t, hd]
|
||||
|
||||
if past_key_value is not None:
|
||||
# reuse k, v, self_attention
|
||||
cache_k = past_key_value[0]
|
||||
cache_v = past_key_value[1]
|
||||
if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
|
||||
# allocate new
|
||||
new_cache_k, new_cache_v = extend_kv_cache(
|
||||
bsz,
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device
|
||||
)
|
||||
new_cache_k[:] = cache_k
|
||||
new_cache_v[:] = cache_v
|
||||
cache_k = new_cache_k
|
||||
cache_v = new_cache_v
|
||||
|
||||
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
|
||||
|
||||
elif use_cache:
|
||||
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
new_key_states, new_value_states = init_kv_cache(
|
||||
bsz,
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
kv_seq_len,
|
||||
max_cache_length,
|
||||
dtype=key_states.dtype,
|
||||
device=device
|
||||
)
|
||||
new_key_states[:] = key_states
|
||||
new_value_states[:] = value_states
|
||||
key_states = new_key_states
|
||||
value_states = new_value_states
|
||||
|
||||
past_key_value = (key_states, value_states) if use_cache else None
|
||||
|
||||
attn_weights = torch.matmul(query_states,
|
||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, "
|
||||
f"but is {attn_weights.size()}"
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
|
||||
f"but is {attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights + attention_mask
|
||||
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights,
|
||||
dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, "
|
||||
f"but is {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
|
@ -71,7 +71,7 @@ def rotate_every_two(x):
|
|||
|
||||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
|
||||
if model_family in ["llama", "baichuan"]:
|
||||
if model_family in ["llama", "baichuan", "internlm"]:
|
||||
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
||||
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
|
|
|
|||
Loading…
Reference in a new issue