LLM: Add baichuan2 gpu spec example (#9973)

* add baichuan2 gpu spec example

* update readme & example

* remove print

* fix typo

* meet comments

* revert

* update
This commit is contained in:
Yina Chen 2024-01-24 16:40:16 +08:00 committed by GitHub
parent ec2d9de0ea
commit b176cad75a
4 changed files with 139 additions and 26 deletions

View file

@ -0,0 +1,54 @@
# Baichuan2
In this directory, you will find examples on how you could apply BigDL-LLM speculative decoding optimizations on Baichuan2 models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat) and [baichuan-inc/Baichuan2-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat) as reference Baichuan2 models.
## 0. Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [speculative.py](./speculative.py), we show a basic use case for a Baichuan2 model to predict the next N tokens using `generate()` API, with BigDL-LLM speculative decoding optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install transformers==4.34.0
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
For optimal performance on Intel Data Center GPU Max Series, it is recommended to set several environment variables.
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1
```
```
python ./speculative.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Baichuan2 model (e.g. `baichuan-inc/Baichuan2-7B-Chat` and `baichuan-inc/Baichuan2-13B-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'baichuan-inc/Baichuan2-7B-Chat'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). A default prompt is provided.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `128`.
#### Sample Output
#### [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat)
折纸的过程看似简单,其实想要做好,还是需要一套很复杂的工艺。以折一支玫瑰花为例,我们可以将整个折纸过程分成三个阶段,即:创建栅格折痕,制作立体基座,完成花瓣修饰。首先是创建栅格折痕:这一步有点像我们折千纸鹤的第一步,即通过对称州依次对折,然后按照长和宽两个维度,依次进行多等分的均匀折叠;最终在两个方向上的折痕会交织成一套完整均匀的小方格拼接图案;这些小方格就组成了类似二维坐标系的参考系统,使得我们在该平面上,通过组合临近折痕的方式从二维小方格上折叠出三维的高台或凹陷,以便于接下来的几座制作过程。需要注意的是,在建立栅格折痕的过程中,可能会出现折叠不对成的情况,这种错误所带来的后果可能是很严重的,就像是蝴蝶效应,一开始只是毫厘之差,最后可能就是天壤之别。然后是制作立体基座:在这一步,我们需要基于栅格折痕折出对称的三维高台或凹陷。从对称性分析不难发现,玫瑰花会有四个周对称的三维高台和配套凹陷。所以,我们可以先折出四分之一的凹陷和高台图案,然后以这四分之一的部分作为摸板,再依次折出其余三个部分的重复图案。值得注意的是,高台的布局不仅要考虑长和宽这两个唯独上的规整衬度和对称分布,还需要同时保证高这个维度上的整齐。与第一阶段的注意事项类似,请处理好三个维度上的所有折角,确保它们符合计划中所要求的那种布局,以免出现三维折叠过程中的蝴蝶效应;为此,我们常常会在折叠第一个四分之一图案的过程中,与成品玫瑰花进行反复比较,以便在第一时间排除掉所有可能的错误。最后一个阶段是完成花瓣修饰。在这个阶段,我们往往强调一个重要名词,叫用心折叠。这里的用心已经不是字面上的认真这个意思,而是指通过我们对于大自然中玫瑰花外型的理解,借助自然的曲线去不断修正花瓣的形状,以期逼近现实中的玫瑰花瓣外形。请注意,在这个阶段的最后一步,我们需要通过拉扯已经弯折的四个花瓣,来调整玫瑰花中心的绽放程度。这个过程可能会伴随玫瑰花整体结构的崩塌,所以,一定要控制好调整的力道,以免出现不可逆的后果。最终,经过三个阶段的折叠,我们会得到一支栩栩如生的玫瑰花冠。如果条件允许,我们可以在一根拉直的铁丝上缠绕绿色纸条,并将玫瑰花冠插在铁丝的一段。这样,我们就得到了一支手工玫瑰花。总之,通过创建栅格折痕,制作立体基座,以及完成花瓣修饰,我们从二维的纸面上创作出了一支三维的花朵。这个过程虽然看似简单,但它确实我们人类借助想象力和常见素材而创作出的艺术品。问: 请基于以上描述,分析哪些步骤做错了很大可能会导致最终折叠失败?答: 首先,在创建栅格折痕的过程中,如果出现折叠不对成的情况,可能会导致最终折叠失败。这是因为折叠不对成可能导致三维折叠过程中的蝴蝶效应,从而影响后续的制作过程。其次,在制作立体基座时,如果高台的布局出现问题,也可能导致最终折叠失败。这是因为高台的布局不仅需要考虑长和宽这两个维度上的规整衬度和对称分布,还需要同时保证高这个维度上的整齐。最后,在完成花瓣修饰的阶段,如果花瓣的形状调整不当,也可能导致最终折叠失败。这是因为在这个过程中,我们需要通过自然曲线去不断修正花瓣的形状,以达到逼真效果。因此,在
Tokens generated 128
E2E Generation time x.xxxxs
First token latency x.xxxxs
#### [baichuan-inc/Baichuan2-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat)
折纸的过程看似简单,其实想要做好,还是需要一套很复杂的工艺。以折一支玫瑰花为例,我们可以将整个折纸过程分成三个阶段,即:创建栅格折痕,制作立体基座,完成花瓣修饰。首先是创建栅格折痕:这一步有点像我们折千纸鹤的第一步,即通过对称州依次对折,然后按照长和宽两个维度,依次进行多等分的均匀折叠;最终在两个方向上的折痕会交织成一套完整均匀的小方格拼接图案;这些小方格就组成了类似二维坐标系的参考系统,使得我们在该平面上,通过组合临近折痕的方式从二维小方格上折叠出三维的高台或凹陷,以便于接下来的几座制作过程。需要注意的是,在建立栅格折痕的过程中,可能会出现折叠不对成的情况,这种错误所带来的后果可能是很严重的,就像是蝴蝶效应,一开始只是毫厘之差,最后可能就是天壤之别。然后是制作立体基座:在这一步,我们需要基于栅格折痕折出对称的三维高台或凹陷。从对称性分析不难发现,玫瑰花会有四个周对称的三维高台和配套凹陷。所以,我们可以先折出四分之一的凹陷和高台图案,然后以这四分之一的部分作为摸板,再依次折出其余三个部分的重复图案。值得注意的是,高台的布局不仅要考虑长和宽这两个唯独上的规整衬度和对称分布,还需要同时保证高这个维度上的整齐。与第一阶段的注意事项类似,请处理好三个维度上的所有折角,确保它们符合计划中所要求的那种布局,以免出现三维折叠过程中的蝴蝶效应;为此,我们常常会在折叠第一个四分之一图案的过程中,与成品玫瑰花进行反复比较,以便在第一时间排除掉所有可能的错误。最后一个阶段是完成花瓣修饰。在这个阶段,我们往往强调一个重要名词,叫用心折叠。这里的用心已经不是字面上的认真这个意思,而是指通过我们对于大自然中玫瑰花外型的理解,借助自然的曲线去不断修正花瓣的形状,以期逼近现实中的玫瑰花瓣外形。请注意,在这个阶段的最后一步,我们需要通过拉扯已经弯折的四个花瓣,来调整玫瑰花中心的绽放程度。这个过程可能会伴随玫瑰花整体结构的崩塌,所以,一定要控制好调整的力道,以免出现不可逆的后果。最终,经过三个阶段的折叠,我们会得到一支栩栩如生的玫瑰花冠。如果条件允许,我们可以在一根拉直的铁丝上缠绕绿色纸条,并将玫瑰花冠插在铁丝的一段。这样,我们就得到了一支手工玫瑰花。总之,通过创建栅格折痕,制作立体基座,以及完成花瓣修饰,我们从二维的纸面上创作出了一支三维的花朵。这个过程虽然看似简单,但它确实我们人类借助想象力和常见素材而创作出的艺术品。问: 请基于以上描述,分析哪些步骤做错了很大可能会导致最终折叠失败?答: 首先,在创建栅格折痕的过程中,如果出现折叠不对成的情况,可能会导致最终的折叠失败。这是因为折叠不对成可能会影响到后续的立体基座制作,甚至可能导致整个折纸过程的混乱。其次,在制作立体基座的过程中,如果高台的布局没有考虑到长、宽、高三个维度上的整齐和对称分布,也可能会导致最终的折叠失败。这是因为高台的布局直接影响到花瓣的形状和排列,从而影响整个玫瑰花的形状。最后,在完成花瓣修饰的阶段,如果没有充分理解大自然中玫瑰花的外形,并借助自然的曲线去不断修正花瓣的形状,也可能导致最终的折叠失败。这是因为花瓣的形状直接
Tokens generated 128
E2E Generation time x.xxxxs
First token latency x.xxxxs

View file

@ -0,0 +1,85 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import argparse
import time
import numpy as np
torch.nn.Linear.reset_parameters = lambda x: None
seed=42
torch.manual_seed(seed)
np.random.seed(seed)
long_input = """折纸的过程看似简单,其实想要做好,还是需要一套很复杂的工艺。以折一支玫瑰花为例,我们可以将整个折纸过程分成三个阶段,即:创建栅格折痕,制作立体基座,完成花瓣修饰。首先是创建栅格折痕:这一步有点像我们折千纸鹤的第一步,即通过对称州依次对折,然后按照长和宽两个维度,依次进行多等分的均匀折叠;最终在两个方向上的折痕会交织成一套完整均匀的小方格拼接图案;这些小方格就组成了类似二维坐标系的参考系统,使得我们在该平面上,通过组合临近折痕的方式从二维小方格上折叠出三维的高台或凹陷,以便于接下来的几座制作过程。需要注意的是,在建立栅格折痕的过程中,可能会出现折叠不对成的情况,这种错误所带来的后果可能是很严重的,就像是蝴蝶效应,一开始只是毫厘之差,最后可能就是天壤之别。然后是制作立体基座:在这一步,我们需要基于栅格折痕折出对称的三维高台或凹陷。从对称性分析不难发现,玫瑰花会有四个周对称的三维高台和配套凹陷。所以,我们可以先折出四分之一的凹陷和高台图案,然后以这四分之一的部分作为摸板,再依次折出其余三个部分的重复图案。值得注意的是,高台的布局不仅要考虑长和宽这两个唯独上的规整衬度和对称分布,还需要同时保证高这个维度上的整齐。与第一阶段的注意事项类似,请处理好三个维度上的所有折角,确保它们符合计划中所要求的那种布局,以免出现三维折叠过程中的蝴蝶效应;为此,我们常常会在折叠第一个四分之一图案的过程中,与成品玫瑰花进行反复比较,以便在第一时间排除掉所有可能的错误。最后一个阶段是完成花瓣修饰。在这个阶段,我们往往强调一个重要名词,叫用心折叠。这里的用心已经不是字面上的认真这个意思,而是指通过我们对于大自然中玫瑰花外型的理解,借助自然的曲线去不断修正花瓣的形状,以期逼近现实中的玫瑰花瓣外形。请注意,在这个阶段的最后一步,我们需要通过拉扯已经弯折的四个花瓣,来调整玫瑰花中心的绽放程度。这个过程可能会伴随玫瑰花整体结构的崩塌,所以,一定要控制好调整的力道,以免出现不可逆的后果。最终,经过三个阶段的折叠,我们会得到一支栩栩如生的玫瑰花冠。如果条件允许,我们可以在一根拉直的铁丝上缠绕绿色纸条,并将玫瑰花冠插在铁丝的一段。这样,我们就得到了一支手工玫瑰花。总之,通过创建栅格折痕,制作立体基座,以及完成花瓣修饰,我们从二维的纸面上创作出了一支三维的花朵。这个过程虽然看似简单,但它确实我们人类借助想象力和常见素材而创作出的艺术品。问: 请基于以上描述,分析哪些步骤做错了很大可能会导致最终折叠失败?答: """
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Baichuan2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="baichuan-inc/Baichuan2-7B-Chat",
help='The huggingface repo id for the Baichuan2 (e.g. `baichuan-inc/Baichuan2-7B-Chat` and `baichuan-inc/Baichuan2-13B-Chat`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default=long_input,
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=128,
help='Max tokens to predict')
parser.add_argument('--th_stop_draft', type=float, default=0.6,
help='draft stop probility')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in optimized fp16 here.
# Set `speculative=True`` to enable speculative decoding,
# it only works when load_in_low_bit="fp16" on Intel GPU or load_in_low_bit="bf16" on latest Intel Xeon CPU
model = AutoModelForCausalLM.from_pretrained(model_path,
optimize_model=True,
torch_dtype=torch.float16,
load_in_low_bit="fp16",
speculative=True,
trust_remote_code=True,
use_cache=True)
model = model.to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
with torch.inference_mode():
prompt = args.prompt
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(model.device)
# warmup
output = model.generate(input_ids,
max_new_tokens=args.n_predict,
th_stop_draft=args.th_stop_draft,
do_sample=False)
output_str = tokenizer.decode(output[0])
# speculative decoding
st = time.perf_counter()
output = model.generate(input_ids,
max_new_tokens=args.n_predict,
th_stop_draft=args.th_stop_draft,
do_sample=False)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
torch.xpu.synchronize()
end = time.perf_counter()
print(output_str)
print(f"Tokens generated {model.n_token_generated}")
print(f"E2E Generation time {(end - st):.4f}s")
print(f"First token latency {model.first_token_time:.4f}s")

View file

@ -22,12 +22,6 @@ source /opt/intel/oneapi/setvars.sh
### 3. Run ### 3. Run
For optimal performance on Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series, it is recommended to set several environment variables.
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
For optimal performance on Intel Data Center GPU Max Series, it is recommended to set several environment variables. For optimal performance on Intel Data Center GPU Max Series, it is recommended to set several environment variables.
```bash ```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so

View file

@ -131,26 +131,6 @@ def speculative_generate(self,
"Draft model should be provided.") "Draft model should be provided.")
if generation_config is None: if generation_config is None:
# legacy: users may modify the model configuration to control generation.
# To trigger this legacy behavior, two conditions must be met
# 1) the generation config must have been created from the
# model config (`_from_model_config` field);
# 2) the generation config must have seen no modification
# since its creation (the hash is the same).
if self.generation_config._from_model_config \
and self.generation_config._original_object_hash == hash(
self.generation_config):
new_generation_config = GenerationConfig.from_model_config(self.config)
if new_generation_config != self.generation_config:
warnings.warn(
"You have modified the pretrained model configuration to control "
"generation. This is a deprecated strategy to control generation "
"and will be removed soon, in a future version. Please use and "
"modify the model generation configuration (see"
" https://huggingface.co/docs/transformers/generation_strategies"
"#default-text-generation-configuration )"
)
self.generation_config = new_generation_config
generation_config = self.generation_config generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config) generation_config = copy.deepcopy(generation_config)