LLM: add mpt example on arc (#8723)
This commit is contained in:
parent
e9a1afffc5
commit
b10d7e1adf
2 changed files with 135 additions and 0 deletions
|
|
@ -0,0 +1,56 @@
|
|||
# MPT
|
||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Llama2 models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat) as a reference MPT model.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for an MPT model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
pip install einops # additional package required for mpt-7b-chat and mpt-30b-chat to conduct generation
|
||||
```
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Run
|
||||
|
||||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MPT model (e.g. `mosaicml/mpt-7b-chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'mosaicml/mpt-7b-chat'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
#### Sample Output
|
||||
#### [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
<|im_start|>user
|
||||
What is AI?<|im_end|>
|
||||
<|im_start|>assistant
|
||||
|
||||
-------------------- Output --------------------
|
||||
user
|
||||
What is AI?
|
||||
assistant
|
||||
AI, or artificial intelligence, is the simulation of human intelligence in machines that are programmed to think and learn like humans. AI systems can perform tasks that typically require
|
||||
```
|
||||
|
|
@ -0,0 +1,79 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GenerationConfig
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py
|
||||
MPT_PROMPT_FORMAT = "<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MPT model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="mosaicml/mpt-7b-chat",
|
||||
help='The huggingface repo id for the MPT models'
|
||||
'(e.g. `mosaicml/mpt-7b-chat`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=False,
|
||||
trust_remote_code=True)
|
||||
model = model.half().to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
prompt = MPT_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# enabling `use_cache=True` allows the model to utilize the previous
|
||||
# key/values attentions to speed up decoding;
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations,
|
||||
# it is important to set use_cache=True for MPT models
|
||||
mpt_generation_config = GenerationConfig(
|
||||
max_new_tokens=args.n_predict,
|
||||
use_cache=True,
|
||||
pad_token_id=tokenizer.eos_token_id,
|
||||
eos_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
st = time.time()
|
||||
output = model.generate(input_ids,
|
||||
generation_config=mpt_generation_config)
|
||||
end = time.time()
|
||||
output = output.cpu()
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Prompt', '-'*20)
|
||||
print(prompt)
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
Loading…
Reference in a new issue