Fix removing convert dtype bug (#9216)
* Fix removing convert dtype bug * fix style
This commit is contained in:
		
							parent
							
								
									942d6418e7
								
							
						
					
					
						commit
						b0ddde0410
					
				
					 1 changed files with 12 additions and 7 deletions
				
			
		| 
						 | 
					@ -355,17 +355,22 @@ class LowBitLinear(nn.Linear):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            if x_2d.is_contiguous() is False:
 | 
					            if x_2d.is_contiguous() is False:
 | 
				
			||||||
                x_2d = x_2d.contiguous()
 | 
					                x_2d = x_2d.contiguous()
 | 
				
			||||||
            # current workaround to reduce first token latency of fp32 input
 | 
					
 | 
				
			||||||
            # sometimes fp16 cause nan and training instability
 | 
					 | 
				
			||||||
            # disable the conversion when training
 | 
					 | 
				
			||||||
            if self.conver_to_half and x_2d.shape[0] > 1 and x_2d.dtype == torch.float32:
 | 
					 | 
				
			||||||
                x_2d = x_2d.half()
 | 
					 | 
				
			||||||
            input_seq_size = x_shape[1]
 | 
					            input_seq_size = x_shape[1]
 | 
				
			||||||
            if self.training and x_2d.requires_grad:
 | 
					            if self.training and x_2d.requires_grad:
 | 
				
			||||||
                result = MatMulLowBit.apply(x_2d, self.weight, input_seq_size)
 | 
					                result = MatMulLowBit.apply(x_2d, self.weight, input_seq_size)
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype,
 | 
					                # current workaround to reduce first token latency of fp32 input
 | 
				
			||||||
                                                 input_seq_size)
 | 
					                # sometimes fp16 cause nan and training instability
 | 
				
			||||||
 | 
					                # disable the conversion when training
 | 
				
			||||||
 | 
					                if self.conver_to_half and x_2d.shape[0] > 1 and x_2d.dtype == torch.float32:
 | 
				
			||||||
 | 
					                    x_2d = x_2d.half()
 | 
				
			||||||
 | 
					                    result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype,
 | 
				
			||||||
 | 
					                                                     input_seq_size)
 | 
				
			||||||
 | 
					                    result = result.to(x.dtype)
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype,
 | 
				
			||||||
 | 
					                                                     input_seq_size)
 | 
				
			||||||
            new_shape = x_shape[:-1] + (self.out_len,)
 | 
					            new_shape = x_shape[:-1] + (self.out_len,)
 | 
				
			||||||
            result = result.view(new_shape)
 | 
					            result = result.view(new_shape)
 | 
				
			||||||
            if self.bias is not None:
 | 
					            if self.bias is not None:
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue