Fix removing convert dtype bug (#9216)
* Fix removing convert dtype bug * fix style
This commit is contained in:
parent
942d6418e7
commit
b0ddde0410
1 changed files with 12 additions and 7 deletions
|
|
@ -355,17 +355,22 @@ class LowBitLinear(nn.Linear):
|
||||||
|
|
||||||
if x_2d.is_contiguous() is False:
|
if x_2d.is_contiguous() is False:
|
||||||
x_2d = x_2d.contiguous()
|
x_2d = x_2d.contiguous()
|
||||||
# current workaround to reduce first token latency of fp32 input
|
|
||||||
# sometimes fp16 cause nan and training instability
|
|
||||||
# disable the conversion when training
|
|
||||||
if self.conver_to_half and x_2d.shape[0] > 1 and x_2d.dtype == torch.float32:
|
|
||||||
x_2d = x_2d.half()
|
|
||||||
input_seq_size = x_shape[1]
|
input_seq_size = x_shape[1]
|
||||||
if self.training and x_2d.requires_grad:
|
if self.training and x_2d.requires_grad:
|
||||||
result = MatMulLowBit.apply(x_2d, self.weight, input_seq_size)
|
result = MatMulLowBit.apply(x_2d, self.weight, input_seq_size)
|
||||||
else:
|
else:
|
||||||
result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype,
|
# current workaround to reduce first token latency of fp32 input
|
||||||
input_seq_size)
|
# sometimes fp16 cause nan and training instability
|
||||||
|
# disable the conversion when training
|
||||||
|
if self.conver_to_half and x_2d.shape[0] > 1 and x_2d.dtype == torch.float32:
|
||||||
|
x_2d = x_2d.half()
|
||||||
|
result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype,
|
||||||
|
input_seq_size)
|
||||||
|
result = result.to(x.dtype)
|
||||||
|
else:
|
||||||
|
result = linear_q4_0.forward_new(x_2d, self.weight.data, self.weight.qtype,
|
||||||
|
input_seq_size)
|
||||||
new_shape = x_shape[:-1] + (self.out_len,)
|
new_shape = x_shape[:-1] + (self.out_len,)
|
||||||
result = result.view(new_shape)
|
result = result.view(new_shape)
|
||||||
if self.bias is not None:
|
if self.bias is not None:
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue