verify xpu-inference image and refine document (#10593)
This commit is contained in:
parent
856f1ace2b
commit
b06de94a50
2 changed files with 32 additions and 15 deletions
|
|
@ -59,10 +59,10 @@ docker exec -it $CONTAINER_NAME bash
|
|||
### 3. Start Inference and Tutorials
|
||||
**3.1 Chat Interface**: Use `chat.py` for conversational AI.
|
||||
|
||||
For example, if your model is chatglm-6b and mounted on /llm/models, you can excute the following command to initiate a conversation:
|
||||
For example, if your model is Llama-2-7b-chat-hf and mounted on /llm/models, you can excute the following command to initiate a conversation:
|
||||
```bash
|
||||
cd /llm/portable-zip
|
||||
python chat.py --model-path /llm/models/chatglm2-6b
|
||||
python chat.py --model-path /llm/models/Llama-2-7b-chat-hf
|
||||
```
|
||||
Here is a demostration:
|
||||
|
||||
|
|
@ -98,8 +98,8 @@ cd /llm//benchmark/all-in-one
|
|||
Users can provide models and related information in config.yaml.
|
||||
```bash
|
||||
repo_id:
|
||||
- 'THUDM/chatglm-6b'
|
||||
- 'THUDM/chatglm2-6b'
|
||||
# - 'THUDM/chatglm-6b'
|
||||
# - 'THUDM/chatglm2-6b'
|
||||
- 'meta-llama/Llama-2-7b-chat-hf'
|
||||
# - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
|
||||
local_model_hub: 'path to your local model hub'
|
||||
|
|
@ -112,10 +112,10 @@ in_out_pairs:
|
|||
- '32-32'
|
||||
- '1024-128'
|
||||
test_api:
|
||||
- "transformer_int4"
|
||||
- "native_int4"
|
||||
- "optimize_model"
|
||||
- "pytorch_autocast_bf16"
|
||||
# - "transformer_int4"
|
||||
# - "native_int4"
|
||||
# - "optimize_model"
|
||||
# - "pytorch_autocast_bf16"
|
||||
# - "transformer_autocast_bf16"
|
||||
# - "bigdl_ipex_bf16"
|
||||
# - "bigdl_ipex_int4"
|
||||
|
|
@ -129,7 +129,7 @@ test_api:
|
|||
# - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, use fp16 for non-linear layer
|
||||
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
|
||||
# - "deepspeed_optimize_model_gpu" # deepspeed autotp on Intel GPU
|
||||
# - "speculative_cpu"
|
||||
- "speculative_cpu"
|
||||
# - "speculative_gpu"
|
||||
cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api)
|
||||
streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api)
|
||||
|
|
@ -152,12 +152,16 @@ Additionally, for examples related to Inference with Speculative Decoding, you c
|
|||
|
||||
## IPEX-LLM Inference on XPU
|
||||
|
||||
First, pull docker image from docker hub:
|
||||
```
|
||||
### 1. Prepare ipex-llm-cpu Docker Image
|
||||
|
||||
Run the following command to pull image from dockerhub:
|
||||
```bash
|
||||
docker pull intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
|
||||
```
|
||||
|
||||
### 2. Start bigdl-llm-cpu Docker Container
|
||||
|
||||
To map the xpu into the container, you need to specify --device=/dev/dri when booting the container.
|
||||
An example could be:
|
||||
```bash
|
||||
#/bin/bash
|
||||
export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
|
||||
|
|
@ -174,7 +178,10 @@ sudo docker run -itd \
|
|||
$DOCKER_IMAGE
|
||||
```
|
||||
|
||||
After the container is booted, you could get into the container through `docker exec`.
|
||||
Access the container:
|
||||
```
|
||||
docker exec -it $CONTAINER_NAME bash
|
||||
```
|
||||
|
||||
To verify the device is successfully mapped into the container, run `sycl-ls` to check the result. In a machine with Arc A770, the sampled output is:
|
||||
|
||||
|
|
@ -186,8 +193,18 @@ root@arda-arc12:/# sycl-ls
|
|||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26241]
|
||||
```
|
||||
|
||||
### 3. Start Inference
|
||||
**Chat Interface**: Use `chat.py` for conversational AI.
|
||||
|
||||
For example, if your model is Llama-2-7b-chat-hf and mounted on /llm/models, you can excute the following command to initiate a conversation:
|
||||
```bash
|
||||
cd /llm
|
||||
python chat.py --model-path /llm/models/Llama-2-7b-chat-hf
|
||||
```
|
||||
|
||||
To run inference using `IPEX-LLM` using xpu, you could refer to this [documentation](https://github.com/intel-analytics/IPEX/tree/main/python/llm/example/GPU).
|
||||
|
||||
|
||||
## IPEX-LLM Serving on CPU
|
||||
|
||||
### Boot container
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ docker build \
|
|||
--build-arg http_proxy=.. \
|
||||
--build-arg https_proxy=.. \
|
||||
--build-arg no_proxy=.. \
|
||||
--rm --no-cache -t intelanalytics/ipex-llm-xpu:2.5.0-SNAPSHOT .
|
||||
--rm --no-cache -t intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT .
|
||||
```
|
||||
|
||||
|
||||
|
|
@ -17,7 +17,7 @@ To map the `xpu` into the container, you need to specify `--device=/dev/dri` whe
|
|||
An example could be:
|
||||
```bash
|
||||
#/bin/bash
|
||||
export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:2.5.0-SNAPSHOT
|
||||
export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
|
||||
|
||||
sudo docker run -itd \
|
||||
--net=host \
|
||||
|
|
|
|||
Loading…
Reference in a new issue