LLM: add benchmark api for bigdl-llm fp16 on GPU (#9919)
* add bmk for bigdl fp16 * fix
This commit is contained in:
parent
427f75000b
commit
b059a32fff
2 changed files with 78 additions and 0 deletions
|
|
@ -18,6 +18,7 @@ test_api:
|
|||
- "pytorch_autocast_bf16"
|
||||
# - "transformer_autocast_bf16"
|
||||
# - "ipex_fp16_gpu" # on Intel GPU
|
||||
# - "bigdl_fp16_gpu" # on Intel GPU
|
||||
# - "transformer_int4_gpu" # on Intel GPU
|
||||
# - "optimize_model_gpu" # on Intel GPU
|
||||
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
|
||||
|
|
|
|||
|
|
@ -80,6 +80,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
|
||||
elif test_api == 'ipex_fp16_gpu':
|
||||
result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
|
||||
elif test_api == "bigdl_fp16_gpu":
|
||||
result = result = run_bigdl_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
|
||||
elif test_api == 'deepspeed_transformer_int4_cpu':
|
||||
result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
|
||||
elif test_api == 'transformer_int4_gpu_win':
|
||||
|
|
@ -579,6 +581,81 @@ def run_ipex_fp16_gpu(repo_id,
|
|||
torch.xpu.empty_cache()
|
||||
return result
|
||||
|
||||
|
||||
def run_bigdl_fp16_gpu(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials,
|
||||
num_beams):
|
||||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
st = time.perf_counter()
|
||||
if repo_id in CHATGLM_IDS:
|
||||
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, use_cache=True,
|
||||
load_in_low_bit="fp16", torch_dtype=torch.float16)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = model.to('xpu')
|
||||
elif repo_id in LLAMA_IDS:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
||||
use_cache=True,
|
||||
load_in_low_bit="fp16",
|
||||
torch_dtype=torch.float16)
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = model.to('xpu')
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
|
||||
use_cache=True,
|
||||
load_in_low_bit="fp16",
|
||||
torch_dtype=torch.float16)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = model.to('xpu')
|
||||
end = time.perf_counter()
|
||||
print(">> loading of model costs {}s".format(end - st))
|
||||
|
||||
model = BenchmarkWrapper(model)
|
||||
|
||||
result = {}
|
||||
with torch.inference_mode():
|
||||
for in_out in in_out_pairs:
|
||||
in_out_len = in_out.split("-")
|
||||
in_len = int(in_out_len[0])
|
||||
out_len = int(in_out_len[1])
|
||||
# As different tokenizer has different encodings,
|
||||
# in_len.txt maybe shorter than we need,
|
||||
# use much longer context to make sure input length
|
||||
test_length = min(in_len*2, 8192)
|
||||
while test_length not in [32, 256, 1024, 2048, 8192]:
|
||||
test_length = test_length * 2
|
||||
input_str = open(f"prompt/{test_length}.txt", 'r').read()
|
||||
# As different tokenizer has different encodings,
|
||||
# slice the input_ids to ensure the prompt length is required length.
|
||||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
||||
num_beams=num_beams)
|
||||
torch.xpu.synchronize()
|
||||
end = time.perf_counter()
|
||||
output_ids = output_ids.cpu()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
actual_out_len = output_ids.shape[1] - actual_in_len
|
||||
print(output[0])
|
||||
if i >= warm_up:
|
||||
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
||||
actual_in_len, actual_out_len])
|
||||
del model
|
||||
torch.xpu.empty_cache()
|
||||
return result
|
||||
|
||||
def run_deepspeed_transformer_int4_cpu(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
|
|
|
|||
Loading…
Reference in a new issue