refactor yuan2 and starcoder2 and fix (#12589)
This commit is contained in:
parent
6ea8033635
commit
b050368efc
6 changed files with 28 additions and 83 deletions
|
|
@ -234,7 +234,7 @@ def llama_attention_forward(
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
attn_output = scaled_dot_product_attention(
|
attn_output = scaled_dot_product_attention(
|
||||||
query_states, key_states, value_states,
|
query_states, key_states, value_states,
|
||||||
attention_mask, q_len == key_states.size(2), math.sqrt(self.head_dim)
|
attention_mask, q_len == key_states.size(2)
|
||||||
)
|
)
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
|
|
||||||
|
|
@ -38,15 +38,13 @@
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import warnings
|
import warnings
|
||||||
import torch.nn as nn
|
|
||||||
from typing import Optional, Tuple, Union, List
|
from typing import Optional, Tuple, Union, List
|
||||||
import math
|
import math
|
||||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, is_enough_kv_cache_room_4_36
|
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, is_enough_kv_cache_room_4_36
|
||||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal, use_quantize_kv_cache
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
|
||||||
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, get_compresskv_attn_mask
|
|
||||||
from ipex_llm.transformers.models.utils import should_use_compresskv, should_use_fuse_rope
|
from ipex_llm.transformers.models.utils import should_use_compresskv, should_use_fuse_rope
|
||||||
from ipex_llm.transformers.models.llama import repeat_kv
|
|
||||||
from ipex_llm.transformers.models.common import merge_qkv_base
|
from ipex_llm.transformers.models.common import merge_qkv_base
|
||||||
|
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
||||||
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache, \
|
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache, \
|
||||||
DynamicCompressCache, DynamicCompressFp8Cache
|
DynamicCompressCache, DynamicCompressFp8Cache
|
||||||
from transformers.cache_utils import Cache
|
from transformers.cache_utils import Cache
|
||||||
|
|
@ -127,11 +125,10 @@ def minicpm_attention_forward(
|
||||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||||
self.layer_idx, None)
|
self.layer_idx, None)
|
||||||
|
|
||||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
attn_output = scaled_dot_product_attention(
|
attn_output = scaled_dot_product_attention(
|
||||||
query_states, key_states, value_states,
|
query_states, key_states, value_states,
|
||||||
attention_mask, q_len == kv_seq_len, math.sqrt(self.head_dim)
|
attention_mask, q_len == kv_seq_len
|
||||||
)
|
)
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
|
|
||||||
|
|
@ -28,6 +28,7 @@ from typing import Optional, List
|
||||||
from torch.nn.functional import linear
|
from torch.nn.functional import linear
|
||||||
from ipex_llm.transformers.models.common import merge_qkv_base, padding_qkv_hd
|
from ipex_llm.transformers.models.common import merge_qkv_base, padding_qkv_hd
|
||||||
from ipex_llm.transformers.models.common import attention_softmax
|
from ipex_llm.transformers.models.common import attention_softmax
|
||||||
|
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
||||||
from transformers import AutoProcessor, TextIteratorStreamer
|
from transformers import AutoProcessor, TextIteratorStreamer
|
||||||
from transformers.generation.logits_process import RepetitionPenaltyLogitsProcessor
|
from transformers.generation.logits_process import RepetitionPenaltyLogitsProcessor
|
||||||
|
|
||||||
|
|
@ -72,10 +73,11 @@ def siglip_attention_forward(
|
||||||
72, 80
|
72, 80
|
||||||
)
|
)
|
||||||
|
|
||||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
attn_output = scaled_dot_product_attention(query_states, key_states, value_states,
|
attn_output = scaled_dot_product_attention(
|
||||||
attention_mask, False, math.sqrt(self.head_dim))
|
query_states, key_states, value_states,
|
||||||
|
attention_mask, False, 1 / math.sqrt(self.head_dim)
|
||||||
|
)
|
||||||
|
|
||||||
attn_output = attn_output[:, :, :, :self.head_dim]
|
attn_output = attn_output[:, :, :, :self.head_dim]
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -595,7 +595,7 @@ def qwen2_attention_forward(
|
||||||
else:
|
else:
|
||||||
attn_output = scaled_dot_product_attention(
|
attn_output = scaled_dot_product_attention(
|
||||||
query_states, key_states, value_states,
|
query_states, key_states, value_states,
|
||||||
attention_mask, q_len == kv_seq_len, math.sqrt(self.head_dim)
|
attention_mask, q_len == kv_seq_len
|
||||||
)
|
)
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
|
|
||||||
|
|
@ -40,17 +40,15 @@ import math
|
||||||
import torch
|
import torch
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
from ipex_llm.transformers.models.common import merge_qkv_base, attention_softmax
|
from ipex_llm.transformers.models.common import merge_qkv_base
|
||||||
from ipex_llm.transformers.models.utils import (
|
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
||||||
use_quantize_kv_cache, restore_fp8_kv_cache,
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, should_use_fuse_rope
|
||||||
should_use_fuse_rope, use_sdp, use_sdp_causal
|
|
||||||
)
|
|
||||||
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
|
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
|
||||||
from ipex_llm.utils.common.log4Error import invalidInputError
|
from ipex_llm.utils.common.log4Error import invalidInputError
|
||||||
|
|
||||||
from typing import Optional, Tuple, List
|
from typing import Optional, Tuple, List
|
||||||
from transformers.cache_utils import Cache
|
from transformers.cache_utils import Cache
|
||||||
from transformers.models.starcoder2.modeling_starcoder2 import repeat_kv, apply_rotary_pos_emb
|
from transformers.models.starcoder2.modeling_starcoder2 import apply_rotary_pos_emb
|
||||||
from transformers.models.starcoder2.modeling_starcoder2 import Starcoder2Model, Starcoder2Attention
|
from transformers.models.starcoder2.modeling_starcoder2 import Starcoder2Model, Starcoder2Attention
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -103,41 +101,11 @@ def attention_forward(
|
||||||
self.layer_idx, None)
|
self.layer_idx, None)
|
||||||
|
|
||||||
# IPEX-LLM OPT: sdp
|
# IPEX-LLM OPT: sdp
|
||||||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
attn_weights = None
|
||||||
import xe_addons
|
attn_output = scaled_dot_product_attention(
|
||||||
if isinstance(past_key_value, DynamicFp8Cache):
|
query_states, key_states, value_states,
|
||||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
attention_mask, q_len == kv_seq_len
|
||||||
attention_mask)
|
)
|
||||||
else:
|
|
||||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
|
||||||
attention_mask)
|
|
||||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
|
||||||
import xe_addons
|
|
||||||
if isinstance(past_key_value, DynamicFp8Cache):
|
|
||||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
|
|
||||||
value_states, attention_mask)
|
|
||||||
else:
|
|
||||||
attn_output = xe_addons.sdp_causal(query_states, key_states,
|
|
||||||
value_states, attention_mask)
|
|
||||||
else:
|
|
||||||
if isinstance(past_key_value, DynamicFp8Cache):
|
|
||||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
|
||||||
query_states.dtype)
|
|
||||||
# repeat k/v heads if n_kv_heads < n_heads
|
|
||||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
||||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
||||||
|
|
||||||
attn_weights = torch.matmul(query_states,
|
|
||||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
||||||
|
|
||||||
if attention_mask is not None:
|
|
||||||
attn_weights = attn_weights + attention_mask
|
|
||||||
|
|
||||||
# upcast attention to fp32
|
|
||||||
attn_weights = attention_softmax(attn_weights)
|
|
||||||
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
|
||||||
training=self.training)
|
|
||||||
attn_output = torch.matmul(attn_weights, value_states)
|
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
|
||||||
|
|
@ -26,12 +26,12 @@ from typing import Optional, Tuple
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from ipex_llm.utils.common import invalidInputError
|
from ipex_llm.utils.common import invalidInputError
|
||||||
from ipex_llm.transformers.models.common import attention_softmax
|
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
||||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, \
|
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, \
|
||||||
mlp_fusion_check, fp16_fusion_check
|
mlp_fusion_check, fp16_fusion_check
|
||||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
|
||||||
from ipex_llm.transformers.models.utils import SILU, update_past_key_value
|
from ipex_llm.transformers.models.utils import SILU, update_past_key_value
|
||||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, use_sdp, use_sdp_causal
|
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
||||||
|
|
||||||
|
|
||||||
def merge_qk(module: torch.nn.Module):
|
def merge_qk(module: torch.nn.Module):
|
||||||
|
|
@ -214,34 +214,12 @@ def yuan_attention_forward(
|
||||||
)
|
)
|
||||||
past_key_value = (key_states, value_states, before_hidden_states) if use_cache else None
|
past_key_value = (key_states, value_states, before_hidden_states) if use_cache else None
|
||||||
|
|
||||||
# IPEX-LLM OPT: sdp
|
# IPEX-LLM OPT: sdpa
|
||||||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
attn_weights = None
|
||||||
import xe_addons
|
attn_output = scaled_dot_product_attention(
|
||||||
if use_quantize_kv:
|
query_states, key_states, value_states,
|
||||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
attention_mask, q_len == kv_seq_len
|
||||||
attention_mask)
|
)
|
||||||
else:
|
|
||||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
|
||||||
attention_mask)
|
|
||||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
|
||||||
import xe_addons
|
|
||||||
if use_quantize_kv:
|
|
||||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
|
|
||||||
value_states, attention_mask)
|
|
||||||
else:
|
|
||||||
attn_output = xe_addons.sdp_causal(query_states, key_states,
|
|
||||||
value_states, attention_mask)
|
|
||||||
else:
|
|
||||||
if use_quantize_kv:
|
|
||||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
|
||||||
query_states.dtype)
|
|
||||||
attn_weights = torch.matmul(query_states,
|
|
||||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
||||||
if attention_mask is not None:
|
|
||||||
attn_weights = attn_weights + attention_mask
|
|
||||||
# upcast attention to fp32
|
|
||||||
attn_weights = attention_softmax(attn_weights)
|
|
||||||
attn_output = torch.matmul(attn_weights, value_states)
|
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2)
|
attn_output = attn_output.transpose(1, 2)
|
||||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue