LLM: add fp8 sdp for chatglm2/3 (#10411)

* add fp8 sdp for chatglm2

* fix style
This commit is contained in:
Ruonan Wang 2024-03-15 09:38:18 +08:00 committed by GitHub
parent fe8976a00f
commit b036205be2

View file

@ -97,7 +97,7 @@ def repeat_kv(key: torch.Tensor, value: torch.Tensor, n_head: int) -> (torch.Ten
def chatglm_rms_norm_forward(self, hidden_states): def chatglm_rms_norm_forward(self, hidden_states):
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad): if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
import linear_q4_0 import linear_q4_0
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous() x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).to(self.weight.dtype).contiguous()
output = linear_q4_0.rms_norm(self.weight, x_2d, self.eps) output = linear_q4_0.rms_norm(self.weight, x_2d, self.eps)
if 1 < x_2d.size(0) <= 64: # may use XMX, need copy if 1 < x_2d.size(0) <= 64: # may use XMX, need copy
output = output.clone() output = output.clone()
@ -260,7 +260,8 @@ def chatglm2_quantized_attention_forward_8eb45c(
n_kv_head, n_kv_head,
seq_len, seq_len,
head_dim, head_dim,
query_layer.device) query_layer.device,
new_layout=True)
k_cache, v_cache = append_fp8_kv_cache(k_cache, v_cache, key_layer, value_layer) k_cache, v_cache = append_fp8_kv_cache(k_cache, v_cache, key_layer, value_layer)
else: else:
k_cache, v_cache = kv_cache k_cache, v_cache = kv_cache
@ -268,31 +269,28 @@ def chatglm2_quantized_attention_forward_8eb45c(
v_cache = v_cache.permute(1, 2, 0, 3) v_cache = v_cache.permute(1, 2, 0, 3)
# k_cache, v_cache's shape: [bs, n_kv_head, seq_len, head_dim] # k_cache, v_cache's shape: [bs, n_kv_head, seq_len, head_dim]
k_cache, v_cache = append_fp8_kv_cache(k_cache, v_cache, key_layer, value_layer) k_cache, v_cache = append_fp8_kv_cache(k_cache, v_cache, key_layer, value_layer,
new_layout=True)
if seq_len != 1: if seq_len != 1:
key, value = restore_fp8_kv_cache(k_cache, v_cache, query_layer.dtype) key, value = restore_fp8_kv_cache(k_cache, v_cache, query_layer.dtype)
key, value = repeat_kv(key, value, n_head) key, value = repeat_kv(key, value, n_head)
attn = torch.matmul(query_layer, key.transpose(2, 3)) / math.sqrt(head_dim) attn = torch.matmul(query_layer, key.transpose(2, 3)) / math.sqrt(head_dim)
if attention_mask is not None:
attention_mask = ~attention_mask
attn_bias = torch.zeros(attention_mask.shape, dtype=query_layer.dtype,
device=query_layer.device)
if attention_mask.dtype == torch.bool:
attn_bias.masked_fill_(attention_mask.logical_not(), float("-inf"))
else:
attn_bias += attention_mask
attn += attn_bias
attn = F.softmax(attn, dim=-1, dtype=torch.float32)
context_layer = torch.matmul(attn.to(value.dtype), value)
else: else:
key, value = k_cache, v_cache key, value = k_cache, v_cache
import linear_q4_0 import linear_q4_0
attn = linear_q4_0.query_key_fp8_matmul(query_layer, key) / math.sqrt(head_dim) context_layer = linear_q4_0.sdp_fp8(query_layer, key, value)
if attention_mask is not None:
attention_mask = ~attention_mask
attn_bias = torch.zeros(attention_mask.shape, dtype=query_layer.dtype,
device=query_layer.device)
if attention_mask.dtype == torch.bool:
attn_bias.masked_fill_(attention_mask.logical_not(), float("-inf"))
else:
attn_bias += attention_mask
attn += attn_bias
attn = F.softmax(attn, dim=-1, dtype=torch.float32)
if seq_len != 1:
context_layer = torch.matmul(attn.to(value.dtype), value)
else:
import linear_q4_0
context_layer = linear_q4_0.attn_value_fp8_matmul(attn, value.transpose(-1, -2))
# context_layer's shape: [bs, n_head, seq_len, head_dim] -> [seq_len, bs, n_head * head_dim] # context_layer's shape: [bs, n_head, seq_len, head_dim] -> [seq_len, bs, n_head * head_dim]
context_layer = context_layer.permute(2, 0, 1, 3).contiguous().view(seq_len, batch_size, -1) context_layer = context_layer.permute(2, 0, 1, 3).contiguous().view(seq_len, batch_size, -1)