LLM: add fp8 sdp for chatglm2/3 (#10411)
* add fp8 sdp for chatglm2 * fix style
This commit is contained in:
parent
fe8976a00f
commit
b036205be2
1 changed files with 17 additions and 19 deletions
|
|
@ -97,7 +97,7 @@ def repeat_kv(key: torch.Tensor, value: torch.Tensor, n_head: int) -> (torch.Ten
|
||||||
def chatglm_rms_norm_forward(self, hidden_states):
|
def chatglm_rms_norm_forward(self, hidden_states):
|
||||||
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
|
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
|
||||||
import linear_q4_0
|
import linear_q4_0
|
||||||
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
|
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).to(self.weight.dtype).contiguous()
|
||||||
output = linear_q4_0.rms_norm(self.weight, x_2d, self.eps)
|
output = linear_q4_0.rms_norm(self.weight, x_2d, self.eps)
|
||||||
if 1 < x_2d.size(0) <= 64: # may use XMX, need copy
|
if 1 < x_2d.size(0) <= 64: # may use XMX, need copy
|
||||||
output = output.clone()
|
output = output.clone()
|
||||||
|
|
@ -260,7 +260,8 @@ def chatglm2_quantized_attention_forward_8eb45c(
|
||||||
n_kv_head,
|
n_kv_head,
|
||||||
seq_len,
|
seq_len,
|
||||||
head_dim,
|
head_dim,
|
||||||
query_layer.device)
|
query_layer.device,
|
||||||
|
new_layout=True)
|
||||||
k_cache, v_cache = append_fp8_kv_cache(k_cache, v_cache, key_layer, value_layer)
|
k_cache, v_cache = append_fp8_kv_cache(k_cache, v_cache, key_layer, value_layer)
|
||||||
else:
|
else:
|
||||||
k_cache, v_cache = kv_cache
|
k_cache, v_cache = kv_cache
|
||||||
|
|
@ -268,16 +269,13 @@ def chatglm2_quantized_attention_forward_8eb45c(
|
||||||
v_cache = v_cache.permute(1, 2, 0, 3)
|
v_cache = v_cache.permute(1, 2, 0, 3)
|
||||||
# k_cache, v_cache's shape: [bs, n_kv_head, seq_len, head_dim]
|
# k_cache, v_cache's shape: [bs, n_kv_head, seq_len, head_dim]
|
||||||
|
|
||||||
k_cache, v_cache = append_fp8_kv_cache(k_cache, v_cache, key_layer, value_layer)
|
k_cache, v_cache = append_fp8_kv_cache(k_cache, v_cache, key_layer, value_layer,
|
||||||
|
new_layout=True)
|
||||||
|
|
||||||
if seq_len != 1:
|
if seq_len != 1:
|
||||||
key, value = restore_fp8_kv_cache(k_cache, v_cache, query_layer.dtype)
|
key, value = restore_fp8_kv_cache(k_cache, v_cache, query_layer.dtype)
|
||||||
key, value = repeat_kv(key, value, n_head)
|
key, value = repeat_kv(key, value, n_head)
|
||||||
attn = torch.matmul(query_layer, key.transpose(2, 3)) / math.sqrt(head_dim)
|
attn = torch.matmul(query_layer, key.transpose(2, 3)) / math.sqrt(head_dim)
|
||||||
else:
|
|
||||||
key, value = k_cache, v_cache
|
|
||||||
import linear_q4_0
|
|
||||||
attn = linear_q4_0.query_key_fp8_matmul(query_layer, key) / math.sqrt(head_dim)
|
|
||||||
if attention_mask is not None:
|
if attention_mask is not None:
|
||||||
attention_mask = ~attention_mask
|
attention_mask = ~attention_mask
|
||||||
attn_bias = torch.zeros(attention_mask.shape, dtype=query_layer.dtype,
|
attn_bias = torch.zeros(attention_mask.shape, dtype=query_layer.dtype,
|
||||||
|
|
@ -288,11 +286,11 @@ def chatglm2_quantized_attention_forward_8eb45c(
|
||||||
attn_bias += attention_mask
|
attn_bias += attention_mask
|
||||||
attn += attn_bias
|
attn += attn_bias
|
||||||
attn = F.softmax(attn, dim=-1, dtype=torch.float32)
|
attn = F.softmax(attn, dim=-1, dtype=torch.float32)
|
||||||
if seq_len != 1:
|
|
||||||
context_layer = torch.matmul(attn.to(value.dtype), value)
|
context_layer = torch.matmul(attn.to(value.dtype), value)
|
||||||
else:
|
else:
|
||||||
|
key, value = k_cache, v_cache
|
||||||
import linear_q4_0
|
import linear_q4_0
|
||||||
context_layer = linear_q4_0.attn_value_fp8_matmul(attn, value.transpose(-1, -2))
|
context_layer = linear_q4_0.sdp_fp8(query_layer, key, value)
|
||||||
|
|
||||||
# context_layer's shape: [bs, n_head, seq_len, head_dim] -> [seq_len, bs, n_head * head_dim]
|
# context_layer's shape: [bs, n_head, seq_len, head_dim] -> [seq_len, bs, n_head * head_dim]
|
||||||
context_layer = context_layer.permute(2, 0, 1, 3).contiguous().view(seq_len, batch_size, -1)
|
context_layer = context_layer.permute(2, 0, 1, 3).contiguous().view(seq_len, batch_size, -1)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue