Add --modelscope option for glm-v4 MiniCPM-V-2_6 glm-edge and internvl2 (#12583)
* Add --modelscope option for glm-v4 and MiniCPM-V-2_6 * glm-edge * minicpm-v-2_6:don't use model_hub=modelscope when use lowbit; internvl2 --------- Co-authored-by: ATMxsp01 <shou.xu@intel.com>
This commit is contained in:
		
							parent
							
								
									f3b5fad3be
								
							
						
					
					
						commit
						b0338c5529
					
				
					 8 changed files with 142 additions and 39 deletions
				
			
		| 
						 | 
					@ -1,5 +1,5 @@
 | 
				
			||||||
# GLM-Edge
 | 
					# GLM-Edge
 | 
				
			||||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on GLM-Edge models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-edge-1.5b-chat](https://huggingface.co/THUDM/glm-edge-1.5b-chat) and [THUDM/glm-edge-4b-chat](https://huggingface.co/THUDM/glm-edge-4b-chat) as reference GLM-Edge models.
 | 
					In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on GLM-Edge models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-edge-1.5b-chat](https://huggingface.co/THUDM/glm-edge-1.5b-chat) and [THUDM/glm-edge-4b-chat](https://huggingface.co/THUDM/glm-edge-4b-chat) (or [ZhipuAI/glm-edge-1.5b-chat](https://www.modelscope.cn/models/ZhipuAI/glm-edge-1.5b-chat) and [ZhipuAI/glm-edge-4b-chat](https://www.modelscope.cn/models/ZhipuAI/glm-edge-4b-chat) for ModelScope) as reference GLM-Edge models.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 0. Requirements
 | 
					## 0. Requirements
 | 
				
			||||||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
					To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
				
			||||||
| 
						 | 
					@ -17,6 +17,9 @@ pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-exte
 | 
				
			||||||
pip install transformers==4.47.0
 | 
					pip install transformers==4.47.0
 | 
				
			||||||
pip install accelerate==0.33.0
 | 
					pip install accelerate==0.33.0
 | 
				
			||||||
pip install "trl<0.12.0" 
 | 
					pip install "trl<0.12.0" 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# [optional] only needed if you would like to use ModelScope as model hub
 | 
				
			||||||
 | 
					pip install modelscope==1.11.0
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 1.2 Installation on Windows
 | 
					### 1.2 Installation on Windows
 | 
				
			||||||
| 
						 | 
					@ -32,6 +35,9 @@ pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-exte
 | 
				
			||||||
pip install transformers==4.47.0
 | 
					pip install transformers==4.47.0
 | 
				
			||||||
pip install accelerate==0.33.0
 | 
					pip install accelerate==0.33.0
 | 
				
			||||||
pip install "trl<0.12.0"
 | 
					pip install "trl<0.12.0"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# [optional] only needed if you would like to use ModelScope as model hub
 | 
				
			||||||
 | 
					pip install modelscope==1.11.0
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 2. Configures OneAPI environment variables for Linux
 | 
					## 2. Configures OneAPI environment variables for Linux
 | 
				
			||||||
| 
						 | 
					@ -102,14 +108,19 @@ set SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
### Example 1: Predict Tokens using `generate()` API
 | 
					### Example 1: Predict Tokens using `generate()` API
 | 
				
			||||||
In the example [generate.py](./generate.py), we show a basic use case for a GLM-Edge model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
 | 
					In the example [generate.py](./generate.py), we show a basic use case for a GLM-Edge model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```
 | 
					```bash
 | 
				
			||||||
 | 
					# for Hugging Face model hub
 | 
				
			||||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
					python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# for ModelScope model hub
 | 
				
			||||||
 | 
					python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Arguments info:
 | 
					Arguments info:
 | 
				
			||||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-Edge model (e.g. `THUDM/glm-edge-1.5b-chat` or `THUDM/glm-edge-4b-chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-edge-4b-chat'`.
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-Edge model (e.g. `THUDM/glm-edge-1.5b-chat` or `THUDM/glm-edge-4b-chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-edge-4b-chat'` for **Hugging Face** or `'ZhipuAI/glm-edge-4b-chat'` for **ModelScope**.
 | 
				
			||||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
 | 
				
			||||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
					- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
				
			||||||
 | 
					- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### Sample Output
 | 
					#### Sample Output
 | 
				
			||||||
#### [THUDM/glm-edge-1.5b-chat](https://huggingface.co/THUDM/glm-edge-1.5b-chat)
 | 
					#### [THUDM/glm-edge-1.5b-chat](https://huggingface.co/THUDM/glm-edge-1.5b-chat)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -19,21 +19,32 @@ import time
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from ipex_llm.transformers import AutoModelForCausalLM
 | 
					from ipex_llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
from transformers import AutoTokenizer
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for GLM-Edge model')
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for GLM-Edge model')
 | 
				
			||||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-edge-4b-chat",
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str,
 | 
				
			||||||
                        help='The huggingface repo id for the GLM-Edge model to be downloaded'
 | 
					                        help='The  Hugging Face or ModelScope repo id for the GLM-Edge model to be downloaded'
 | 
				
			||||||
                             ', or the path to the huggingface checkpoint folder')
 | 
					                             ', or the path to the checkpoint folder')
 | 
				
			||||||
    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
					    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
				
			||||||
                        help='Prompt to infer')
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
					    parser.add_argument('--n-predict', type=int, default=32,
 | 
				
			||||||
                        help='Max tokens to predict')
 | 
					                        help='Max tokens to predict')
 | 
				
			||||||
 | 
					    parser.add_argument('--modelscope', action="store_true", default=False, 
 | 
				
			||||||
 | 
					                        help="Use models from modelscope")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    args = parser.parse_args()
 | 
					    args = parser.parse_args()
 | 
				
			||||||
    model_path = args.repo_id_or_model_path
 | 
					
 | 
				
			||||||
 | 
					    if args.modelscope:
 | 
				
			||||||
 | 
					        from modelscope import AutoTokenizer
 | 
				
			||||||
 | 
					        model_hub = 'modelscope'
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					        model_hub = 'huggingface'
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
 | 
				
			||||||
 | 
					        ("ZhipuAI/glm-edge-4b-chat" if args.modelscope else "THUDM/glm-edge-4b-chat")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Load model in 4 bit,
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
    # which convert the relevant layers in the model into INT4 format
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
| 
						 | 
					@ -43,7 +54,8 @@ if __name__ == '__main__':
 | 
				
			||||||
                                                 load_in_4bit=True,
 | 
					                                                 load_in_4bit=True,
 | 
				
			||||||
                                                 optimize_model=True,
 | 
					                                                 optimize_model=True,
 | 
				
			||||||
                                                 trust_remote_code=True,
 | 
					                                                 trust_remote_code=True,
 | 
				
			||||||
                                                 use_cache=True)
 | 
					                                                 use_cache=True,
 | 
				
			||||||
 | 
					                                                 model_hub=model_hub)
 | 
				
			||||||
    model = model.half().to("xpu")
 | 
					    model = model.half().to("xpu")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Load tokenizer
 | 
					    # Load tokenizer
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,5 +1,5 @@
 | 
				
			||||||
# MiniCPM-V-2_6
 | 
					# MiniCPM-V-2_6
 | 
				
			||||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V-2_6 model on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) as reference MiniCPM-V-2_6 model.
 | 
					In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V-2_6 model on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) (or [OpenBMB/MiniCPM-V-2_6](https://www.modelscope.cn/models/OpenBMB/MiniCPM-V-2_6) for ModelScope) as reference MiniCPM-V-2_6 model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 0. Requirements
 | 
					## 0. Requirements
 | 
				
			||||||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
					To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
				
			||||||
| 
						 | 
					@ -16,6 +16,9 @@ conda activate llm
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install transformers==4.40.0 "trl<0.12.0"
 | 
					pip install transformers==4.40.0 "trl<0.12.0"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# [optional] only needed if you would like to use ModelScope as model hub
 | 
				
			||||||
 | 
					pip install modelscope==1.11.0
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 1.2 Installation on Windows
 | 
					#### 1.2 Installation on Windows
 | 
				
			||||||
| 
						 | 
					@ -28,6 +31,9 @@ conda activate llm
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install transformers==4.40.0 "trl<0.12.0"
 | 
					pip install transformers==4.40.0 "trl<0.12.0"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# [optional] only needed if you would like to use ModelScope as model hub
 | 
				
			||||||
 | 
					pip install modelscope==1.11.0
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Configures OneAPI environment variables for Linux
 | 
					### 2. Configures OneAPI environment variables for Linux
 | 
				
			||||||
| 
						 | 
					@ -96,31 +102,48 @@ set SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
### 4. Running examples
 | 
					### 4. Running examples
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- chat without streaming mode:
 | 
					- chat without streaming mode:
 | 
				
			||||||
  ```
 | 
					  ```bash
 | 
				
			||||||
 | 
					  # for Hugging Face model hub
 | 
				
			||||||
  python ./chat.py --prompt 'What is in the image?'
 | 
					  python ./chat.py --prompt 'What is in the image?'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  # for ModelScope model hub
 | 
				
			||||||
 | 
					  python ./chat.py --prompt 'What is in the image?' --modelscope
 | 
				
			||||||
  ```
 | 
					  ```
 | 
				
			||||||
- chat in streaming mode:
 | 
					- chat in streaming mode:
 | 
				
			||||||
  ```
 | 
					  ```bash
 | 
				
			||||||
 | 
					  # for Hugging Face model hub
 | 
				
			||||||
  python ./chat.py --prompt 'What is in the image?' --stream
 | 
					  python ./chat.py --prompt 'What is in the image?' --stream
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  # for ModelScope model hub
 | 
				
			||||||
 | 
					  python ./chat.py --prompt 'What is in the image?' --stream --modelscope
 | 
				
			||||||
  ```
 | 
					  ```
 | 
				
			||||||
- save model with low-bit optimization (if `LOWBIT_MODEL_PATH` does not exist)
 | 
					- save model with low-bit optimization (if `LOWBIT_MODEL_PATH` does not exist)
 | 
				
			||||||
  ```
 | 
					  ```bash
 | 
				
			||||||
 | 
					  # for Hugging Face model hub
 | 
				
			||||||
  python ./chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?'
 | 
					  python ./chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  # for ModelScope model hub
 | 
				
			||||||
 | 
					  python ./chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?' --modelscope
 | 
				
			||||||
  ```
 | 
					  ```
 | 
				
			||||||
- chat with saved model with low-bit optimization (if `LOWBIT_MODEL_PATH` exists):
 | 
					- chat with saved model with low-bit optimization (if `LOWBIT_MODEL_PATH` exists):
 | 
				
			||||||
  ```
 | 
					  ```bash
 | 
				
			||||||
 | 
					  # for Hugging Face model hub
 | 
				
			||||||
  python ./chat.py --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?'
 | 
					  python ./chat.py --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  # for ModelScope model hub
 | 
				
			||||||
 | 
					  python ./chat.py --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?' --modelscope
 | 
				
			||||||
  ```
 | 
					  ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
> [!TIP]
 | 
					> [!TIP]
 | 
				
			||||||
> For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`.
 | 
					> For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Arguments info:
 | 
					Arguments info:
 | 
				
			||||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2_6 (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'`.
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the MiniCPM-V-2_6 (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'` for **Hugging Face** or `'OpenBMB/MiniCPM-V-2_6'` for **ModelScope**.
 | 
				
			||||||
- `--lowbit-path LOWBIT_MODEL_PATH`: argument defining the path to save/load the model with IPEX-LLM low-bit optimization. If it is an empty string, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded. If it is an existing path, the saved model with low-bit optimization in `LOWBIT_MODEL_PATH` will be loaded. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, and the optimized low-bit model will be saved into `LOWBIT_MODEL_PATH`. It is default to be `''`, i.e. an empty string.
 | 
					- `--lowbit-path LOWBIT_MODEL_PATH`: argument defining the path to save/load the model with IPEX-LLM low-bit optimization. If it is an empty string, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded. If it is an existing path, the saved model with low-bit optimization in `LOWBIT_MODEL_PATH` will be loaded. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, and the optimized low-bit model will be saved into `LOWBIT_MODEL_PATH`. It is default to be `''`, i.e. an empty string.
 | 
				
			||||||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
 | 
					- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
 | 
				
			||||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
				
			||||||
- `--stream`: flag to chat in streaming mode
 | 
					- `--stream`: flag to chat in streaming mode
 | 
				
			||||||
 | 
					- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### Sample Output
 | 
					#### Sample Output
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -22,14 +22,14 @@ import requests
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
from PIL import Image
 | 
					from PIL import Image
 | 
				
			||||||
from ipex_llm.transformers import AutoModel
 | 
					from ipex_llm.transformers import AutoModel
 | 
				
			||||||
from transformers import AutoTokenizer, AutoProcessor
 | 
					from transformers import AutoProcessor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for openbmb/MiniCPM-V-2_6 model')
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for openbmb/MiniCPM-V-2_6 model')
 | 
				
			||||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str,
 | 
				
			||||||
                        help='The huggingface repo id for the openbmb/MiniCPM-V-2_6 model to be downloaded'
 | 
					                        help='The Hugging Face or ModelScope repo id for the MiniCPM-V-2_6 model to be downloaded'
 | 
				
			||||||
                             ', or the path to the huggingface checkpoint folder')
 | 
					                             ', or the path to the checkpoint folder')
 | 
				
			||||||
    parser.add_argument("--lowbit-path", type=str,
 | 
					    parser.add_argument("--lowbit-path", type=str,
 | 
				
			||||||
        default="",
 | 
					        default="",
 | 
				
			||||||
        help="The path to the saved model folder with IPEX-LLM low-bit optimization. "
 | 
					        help="The path to the saved model folder with IPEX-LLM low-bit optimization. "
 | 
				
			||||||
| 
						 | 
					@ -44,9 +44,20 @@ if __name__ == '__main__':
 | 
				
			||||||
                        help='Prompt to infer')
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
    parser.add_argument('--stream', action='store_true',
 | 
					    parser.add_argument('--stream', action='store_true',
 | 
				
			||||||
                        help='Whether to chat in streaming mode')
 | 
					                        help='Whether to chat in streaming mode')
 | 
				
			||||||
 | 
					    parser.add_argument('--modelscope', action="store_true", default=False, 
 | 
				
			||||||
 | 
					                        help="Use models from modelscope")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    args = parser.parse_args()
 | 
					    args = parser.parse_args()
 | 
				
			||||||
    model_path = args.repo_id_or_model_path
 | 
					
 | 
				
			||||||
 | 
					    if args.modelscope:
 | 
				
			||||||
 | 
					        from modelscope import AutoTokenizer
 | 
				
			||||||
 | 
					        model_hub = 'modelscope'
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					        model_hub = 'huggingface'
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
 | 
				
			||||||
 | 
					        ("OpenBMB/MiniCPM-V-2_6" if args.modelscope else "openbmb/MiniCPM-V-2_6")
 | 
				
			||||||
    image_path = args.image_url_or_path
 | 
					    image_path = args.image_url_or_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    lowbit_path = args.lowbit_path
 | 
					    lowbit_path = args.lowbit_path
 | 
				
			||||||
| 
						 | 
					@ -61,7 +72,8 @@ if __name__ == '__main__':
 | 
				
			||||||
                                        optimize_model=True,
 | 
					                                        optimize_model=True,
 | 
				
			||||||
                                        trust_remote_code=True,
 | 
					                                        trust_remote_code=True,
 | 
				
			||||||
                                        use_cache=True,
 | 
					                                        use_cache=True,
 | 
				
			||||||
                                        modules_to_not_convert=["vpm", "resampler"])
 | 
					                                        modules_to_not_convert=["vpm", "resampler"],
 | 
				
			||||||
 | 
					                                        model_hub=model_hub)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
					        tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
                                                  trust_remote_code=True)
 | 
					                                                  trust_remote_code=True)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,5 +1,5 @@
 | 
				
			||||||
# GLM-4V
 | 
					# GLM-4V
 | 
				
			||||||
In this directory, you will find examples on how you could apply IPEX-LLM FP8 optimizations on GLM-4V models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b) as a reference GLM-4V model.
 | 
					In this directory, you will find examples on how you could apply IPEX-LLM FP8 optimizations on GLM-4V models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b) (or [ZhipuAI/glm-4v-9b](https://www.modelscope.cn/models/ZhipuAI/glm-4v-9b) for ModelScope) as a reference GLM-4V model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 0. Requirements
 | 
					## 0. Requirements
 | 
				
			||||||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
					To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
				
			||||||
| 
						 | 
					@ -16,6 +16,9 @@ conda activate llm
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install tiktoken transformers==4.42.4 "trl<0.12.0"
 | 
					pip install tiktoken transformers==4.42.4 "trl<0.12.0"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# [optional] only needed if you would like to use ModelScope as model hub
 | 
				
			||||||
 | 
					pip install modelscope==1.11.0
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 1.2 Installation on Windows
 | 
					#### 1.2 Installation on Windows
 | 
				
			||||||
| 
						 | 
					@ -28,6 +31,9 @@ conda activate llm
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install tiktoken transformers==4.42.4 "trl<0.12.0"
 | 
					pip install tiktoken transformers==4.42.4 "trl<0.12.0"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# [optional] only needed if you would like to use ModelScope as model hub
 | 
				
			||||||
 | 
					pip install modelscope==1.11.0
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Configures OneAPI environment variables for Linux
 | 
					### 2. Configures OneAPI environment variables for Linux
 | 
				
			||||||
| 
						 | 
					@ -95,15 +101,20 @@ set SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
					> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
				
			||||||
### 4. Running examples
 | 
					### 4. Running examples
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```
 | 
					```bash
 | 
				
			||||||
python ./generate.py --prompt 'What is in the image?'
 | 
					# for Hugging Face model hub
 | 
				
			||||||
 | 
					python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# for ModelScope model hub
 | 
				
			||||||
 | 
					python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH --modelscope
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Arguments info:
 | 
					Arguments info:
 | 
				
			||||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-4V model (e.g. `THUDM/glm-4v-9b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-4v-9b'`.
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the GLM-4V model (e.g. `THUDM/glm-4v-9b`) to be downloaded, or the path to the checkpoint folder. It is default to be `'THUDM/glm-4v-9b'` for **Hugging Face** or `'ZhipuAI/glm-4v-9b'` for **ModelScope**.
 | 
				
			||||||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
 | 
					- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
 | 
				
			||||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
				
			||||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
					- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
				
			||||||
 | 
					- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### Sample Output
 | 
					#### Sample Output
 | 
				
			||||||
#### [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b)
 | 
					#### [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -22,13 +22,12 @@ import requests
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from PIL import Image
 | 
					from PIL import Image
 | 
				
			||||||
from ipex_llm.transformers import AutoModelForCausalLM
 | 
					from ipex_llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
from transformers import AutoTokenizer
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for THUDM/glm-4v-9b model')
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for THUDM/glm-4v-9b model')
 | 
				
			||||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4v-9b",
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str,
 | 
				
			||||||
                        help='The huggingface repo id for the THUDM/glm-4v-9b model to be downloaded'
 | 
					                        help='The Hugging Face or ModelScope repo id for the glm-4v model to be downloaded'
 | 
				
			||||||
                             ', or the path to the huggingface checkpoint folder')
 | 
					                             ', or the path to the checkpoint folder')
 | 
				
			||||||
    parser.add_argument('--image-url-or-path', type=str,
 | 
					    parser.add_argument('--image-url-or-path', type=str,
 | 
				
			||||||
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
					                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
				
			||||||
                        help='The URL or path to the image to infer')
 | 
					                        help='The URL or path to the image to infer')
 | 
				
			||||||
| 
						 | 
					@ -36,9 +35,20 @@ if __name__ == '__main__':
 | 
				
			||||||
                        help='Prompt to infer')
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
					    parser.add_argument('--n-predict', type=int, default=32,
 | 
				
			||||||
                        help='Max tokens to predict')
 | 
					                        help='Max tokens to predict')
 | 
				
			||||||
 | 
					    parser.add_argument('--modelscope', action="store_true", default=False, 
 | 
				
			||||||
 | 
					                        help="Use models from modelscope")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    args = parser.parse_args()
 | 
					    args = parser.parse_args()
 | 
				
			||||||
    model_path = args.repo_id_or_model_path
 | 
					
 | 
				
			||||||
 | 
					    if args.modelscope:
 | 
				
			||||||
 | 
					        from modelscope import AutoTokenizer
 | 
				
			||||||
 | 
					        model_hub = 'modelscope'
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					        model_hub = 'huggingface'
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
 | 
				
			||||||
 | 
					        ("ZhipuAI/glm-4v-9b" if args.modelscope else "THUDM/glm-4v-9b")
 | 
				
			||||||
    image_path = args.image_url_or_path
 | 
					    image_path = args.image_url_or_path
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    # Load model in 4 bit,
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
| 
						 | 
					@ -49,7 +59,9 @@ if __name__ == '__main__':
 | 
				
			||||||
                                                 load_in_4bit=True,
 | 
					                                                 load_in_4bit=True,
 | 
				
			||||||
                                                 optimize_model=True,
 | 
					                                                 optimize_model=True,
 | 
				
			||||||
                                                 trust_remote_code=True,
 | 
					                                                 trust_remote_code=True,
 | 
				
			||||||
                                                 use_cache=True).half().to('xpu')
 | 
					                                                 use_cache=True,
 | 
				
			||||||
 | 
					                                                 model_hub=model_hub)
 | 
				
			||||||
 | 
					    model = model.half().to('xpu')
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -22,22 +22,32 @@ import requests
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
from PIL import Image
 | 
					from PIL import Image
 | 
				
			||||||
from ipex_llm.transformers import AutoModelForCausalLM
 | 
					from ipex_llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
from transformers import AutoTokenizer, CLIPImageProcessor
 | 
					from transformers import CLIPImageProcessor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for OpenGVLab/InternVL2-4B model')
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for OpenGVLab/InternVL2-4B model')
 | 
				
			||||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="OpenGVLab/InternVL2-4B",
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="OpenGVLab/InternVL2-4B",
 | 
				
			||||||
                        help='The huggingface repo id for the OpenGVLab/InternVL2-4B model to be downloaded'
 | 
					                        help='The Hugging Face or ModelScope repo id for the InternVL2 model to be downloaded'
 | 
				
			||||||
                             ', or the path to the huggingface checkpoint folder')
 | 
					                             ', or the path to the checkpoint folder')
 | 
				
			||||||
    parser.add_argument('--image-url-or-path', type=str,
 | 
					    parser.add_argument('--image-url-or-path', type=str,
 | 
				
			||||||
                        default='https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg',
 | 
					                        default='https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg',
 | 
				
			||||||
                        help='The URL or path to the image to infer')
 | 
					                        help='The URL or path to the image to infer')
 | 
				
			||||||
    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
					    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
				
			||||||
                        help='Prompt to infer')
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
    parser.add_argument('--n-predict', type=int, default=64, help='Max tokens to predict')
 | 
					    parser.add_argument('--n-predict', type=int, default=64, help='Max tokens to predict')
 | 
				
			||||||
 | 
					    parser.add_argument('--modelscope', action="store_true", default=False, 
 | 
				
			||||||
 | 
					                        help="Use models from modelscope")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    args = parser.parse_args()
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if args.modelscope:
 | 
				
			||||||
 | 
					        from modelscope import AutoTokenizer
 | 
				
			||||||
 | 
					        model_hub = 'modelscope'
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					        model_hub = 'huggingface'
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
    model_path = args.repo_id_or_model_path
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
    image_path = args.image_url_or_path
 | 
					    image_path = args.image_url_or_path
 | 
				
			||||||
    n_predict = args.n_predict
 | 
					    n_predict = args.n_predict
 | 
				
			||||||
| 
						 | 
					@ -48,7 +58,8 @@ if __name__ == '__main__':
 | 
				
			||||||
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
					    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
				
			||||||
    model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
 | 
				
			||||||
                                                 load_in_low_bit="sym_int4",
 | 
					                                                 load_in_low_bit="sym_int4",
 | 
				
			||||||
                                                 modules_to_not_convert=["vision_model"])
 | 
					                                                 modules_to_not_convert=["vision_model"],
 | 
				
			||||||
 | 
					                                                 model_hub=model_hub)
 | 
				
			||||||
    model = model.half().to('xpu')
 | 
					    model = model.half().to('xpu')
 | 
				
			||||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
                                              trust_remote_code=True)
 | 
					                                              trust_remote_code=True)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,5 +1,5 @@
 | 
				
			||||||
# InternVL2
 | 
					# InternVL2
 | 
				
			||||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on InternVL2 model on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [OpenGVLab/InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B) as a reference InternVL2 model.
 | 
					In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on InternVL2 model on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [OpenGVLab/InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B) (or [OpenGVLab/InternVL2-4B](https://www.modelscope.cn/models/OpenGVLab/InternVL2-4B) for ModelScope) as a reference InternVL2 model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 0. Requirements
 | 
					## 0. Requirements
 | 
				
			||||||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
					To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
				
			||||||
| 
						 | 
					@ -17,6 +17,9 @@ pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-exte
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install einops timm
 | 
					pip install einops timm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# [optional] only needed if you would like to use ModelScope as model hub
 | 
				
			||||||
 | 
					pip install modelscope==1.11.0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 1.2 Installation on Windows
 | 
					#### 1.2 Installation on Windows
 | 
				
			||||||
| 
						 | 
					@ -30,6 +33,9 @@ pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-exte
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install einops timm
 | 
					pip install einops timm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# [optional] only needed if you would like to use ModelScope as model hub
 | 
				
			||||||
 | 
					pip install modelscope==1.11.0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Configures OneAPI environment variables for Linux
 | 
					### 2. Configures OneAPI environment variables for Linux
 | 
				
			||||||
| 
						 | 
					@ -98,15 +104,20 @@ set SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
### 4. Running examples
 | 
					### 4. Running examples
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- chat with specified prompt:
 | 
					- chat with specified prompt:
 | 
				
			||||||
  ```
 | 
					  ```bash
 | 
				
			||||||
  python ./chat.py --prompt 'What is in the image?'
 | 
					  # for Hugging Face model hub
 | 
				
			||||||
 | 
					  python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  # for ModelScope model hub
 | 
				
			||||||
 | 
					  python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH --modelscope
 | 
				
			||||||
  ```
 | 
					  ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Arguments info:
 | 
					Arguments info:
 | 
				
			||||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the InternVL2 (e.g. `OpenGVLab/InternVL2-4B`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'OpenGVLab/InternVL2-4B'`.
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the InternVL2 (e.g. `OpenGVLab/InternVL2-4B`) to be downloaded, or the path to the checkpoint folder. It is default to be `'OpenGVLab/InternVL2-4B'`.
 | 
				
			||||||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'`.
 | 
					- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'`.
 | 
				
			||||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
				
			||||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `64`.
 | 
					- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `64`.
 | 
				
			||||||
 | 
					- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### Sample Output
 | 
					#### Sample Output
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue