diff --git a/python/llm/test/benchmark/csv_to_html.py b/python/llm/test/benchmark/csv_to_html.py
index 3240215a..ace12ffc 100644
--- a/python/llm/test/benchmark/csv_to_html.py
+++ b/python/llm/test/benchmark/csv_to_html.py
@@ -22,17 +22,20 @@ import argparse
import pandas as pd
def highlight_vals(val, max=3.0):
- if val > max:
- return 'background-color: %s' % 'green'
- elif val < -max:
- return 'background-color: %s' % 'red'
+ if isinstance(val, float):
+ if val > max:
+ return 'background-color: %s' % 'green'
+ elif val <= -max:
+ return 'background-color: %s' % 'red'
else:
return ''
def main():
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
- help="The directory which stores the .csv file", default="/mnt/disk1/nightly_perf/")
+ help="The directory which stores the .csv file", default="/mnt/disk1/nightly_perf_gpu/")
+ parser.add_argument("-t", "--threshold", type=float, dest="threshold",
+ help="the threshold of highlight values", default=3.0)
args = parser.parse_args()
csv_files = []
@@ -42,7 +45,10 @@ def main():
csv_files.append(file_path)
csv_files.sort(reverse=True)
+ highlight_threshold=args.threshold
+
latest_csv = pd.read_csv(csv_files[0], index_col=0)
+ daily_html=csv_files[0].split(".")[0]+".html"
if len(csv_files)>1:
previous_csv = pd.read_csv(csv_files[1], index_col=0)
@@ -62,6 +68,8 @@ def main():
latest_1st_token_latency=latest_csv_row[latency_1st_token]
latest_2_avg_latency=latest_csv_row[latency_2_avg]
+ in_previous_flag=False
+
for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
previous_csv_model=previous_csv_row['model'].strip()
@@ -75,21 +83,28 @@ def main():
diff1[latest_csv_ind]=round((previous_1st_token_latency-latest_1st_token_latency)*100/previous_1st_token_latency,2)
last2[latest_csv_ind]=previous_2_avg_latency
diff2[latest_csv_ind]=round((previous_2_avg_latency-latest_2_avg_latency)*100/previous_2_avg_latency,2)
+ in_previous_flag=True
+
+ if not in_previous_flag:
+ last1[latest_csv_ind]=pd.NA
+ diff1[latest_csv_ind]=pd.NA
+ last2[latest_csv_ind]=pd.NA
+ diff2[latest_csv_ind]=pd.NA
latest_csv.insert(loc=3,column='last1',value=last1)
latest_csv.insert(loc=4,column='diff1(%)',value=diff1)
latest_csv.insert(loc=5,column='last2',value=last2)
latest_csv.insert(loc=6,column='diff2(%)',value=diff2)
- daily_html=csv_files[0].split(".")[0]+".html"
+ subset=['diff1(%)','diff2(%)']
+ columns={'1st token avg latency (ms)': '{:.2f}', '2+ avg latency (ms/token)': '{:.2f}', 'last1': '{:.2f}', 'diff1(%)': '{:.2f}',
+ 'last2': '{:.2f}', 'diff2(%)': '{:.2f}', 'encoder time (ms)': '{:.2f}', 'peak mem (GB)': '{:.2f}'}
- subset=['diff1(%)','diff2(%)']
- columns={'1st token avg latency (ms)': '{:.2f}', '2+ avg latency (ms/token)': '{:.2f}', 'last1': '{:.2f}', 'diff1(%)': '{:.2f}',
- 'last2': '{:.2f}', 'diff2(%)': '{:.2f}', 'encoder time (ms)': '{:.2f}'}
-
- with open(daily_html, 'w') as f:
- f.write(latest_csv.style.format(columns).applymap(highlight_vals, subset)
- .set_table_attributes("border=1").render())
+ with open(daily_html, 'w') as f:
+ f.write(latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=highlight_threshold), subset)
+ .set_table_attributes("border=1").render())
+ else:
+ latest_csv.to_html(daily_html)
if __name__ == "__main__":
sys.exit(main())
\ No newline at end of file