Add ziya CPU example (#10114)
* ziya on CPU * add README for ziya * specify use_cache * add arc CPU * update prompt format * update link * add comments to emphasize use_cache * update pip cmd
This commit is contained in:
		
							parent
							
								
									71875ebc24
								
							
						
					
					
						commit
						add3899311
					
				
					 6 changed files with 323 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -185,6 +185,7 @@ Over 40 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
			
		|||
| RWKV5 |  | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
 | 
			
		||||
| Bark | [link](python/llm/example/CPU/PyTorch-Models/Model/bark) | [link](python/llm/example/GPU/PyTorch-Models/Model/bark) |
 | 
			
		||||
| SpeechT5 |  | [link](python/llm/example/GPU/PyTorch-Models/Model/speech-t5) |
 | 
			
		||||
| Ziya-Coding-34B-v1.0 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
 | 
			
		||||
 | 
			
		||||
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -81,7 +81,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
 | 
			
		|||
| RWKV5 |  | [link](example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
 | 
			
		||||
| Bark | [link](example/CPU/PyTorch-Models/Model/bark) | [link](example/GPU/PyTorch-Models/Model/bark) |
 | 
			
		||||
| SpeechT5 |  | [link](example/GPU/PyTorch-Models/Model/speech-t5) |
 | 
			
		||||
 | 
			
		||||
| Ziya-Coding-34B-v1.0 | [link](example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
 | 
			
		||||
 | 
			
		||||
### Working with `bigdl-llm`
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,88 @@
 | 
			
		|||
# Ziya
 | 
			
		||||
 | 
			
		||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Ziya models. For illustration purposes, we utilize the [IDEA-CCNL/Ziya-Coding-34B-v1.0](https://huggingface.co/IDEA-CCNL/Ziya-Coding-34B-v1.0) as a reference Ziya model.
 | 
			
		||||
 | 
			
		||||
> **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git).
 | 
			
		||||
>
 | 
			
		||||
> BigDL-LLM optimizes the *Transformers* model in INT4 precision at runtime, and thus no explicit conversion is needed.
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a Ziya model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
After installing conda, create a Python environment for BigDL-LLM:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
			
		||||
pip install einops  # additional package required for Ziya to conduct generation
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Run
 | 
			
		||||
After setting up the Python environment, you could run the example by following steps.
 | 
			
		||||
 | 
			
		||||
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
 | 
			
		||||
>
 | 
			
		||||
> Please select the appropriate size of the Ziya model based on the capabilities of your machine.
 | 
			
		||||
 | 
			
		||||
#### 2.1 Client
 | 
			
		||||
On client Windows machines, it is recommended to run directly with full utilization of all cores:
 | 
			
		||||
```powershell
 | 
			
		||||
python ./generate.py --prompt 'def quick_sort(arr):\n'
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
			
		||||
 | 
			
		||||
#### 2.2 Server
 | 
			
		||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
			
		||||
 | 
			
		||||
E.g. on Linux,
 | 
			
		||||
```bash
 | 
			
		||||
# set BigDL-LLM env variables
 | 
			
		||||
source bigdl-llm-init
 | 
			
		||||
 | 
			
		||||
# e.g. for a server with 48 cores per socket
 | 
			
		||||
export OMP_NUM_THREADS=48
 | 
			
		||||
numactl -C 0-47 -m 0 python ./generate.py --prompt 'def quick_sort(arr):\n'
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
			
		||||
 | 
			
		||||
#### 2.3 Arguments Info
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the Ziya model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'IDEA-CCNL/Ziya-Coding-34B-v1.0'`.
 | 
			
		||||
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `def quick_sort(arr):\n`.
 | 
			
		||||
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `128`.
 | 
			
		||||
 | 
			
		||||
#### 2.4 Sample Output
 | 
			
		||||
#### [IDEA-CCNL/Ziya-Coding-34B-v1.0](https://huggingface.co/IDEA-CCNL/Ziya-Coding-34B-v1.0)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
<human>: 
 | 
			
		||||
def quick_sort(arr):\n
 | 
			
		||||
<bot>: 
 | 
			
		||||
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
<s> <human>: 
 | 
			
		||||
def quick_sort(arr):\n
 | 
			
		||||
<bot>: 
 | 
			
		||||
def partition(arr, low, high):
 | 
			
		||||
 | 
			
		||||
    i = (low-1)
 | 
			
		||||
    pivot = arr[high]
 | 
			
		||||
    for j in range(low, high):
 | 
			
		||||
        if arr[j] <= pivot:
 | 
			
		||||
            arr[i], arr[j] = arr[j], arr[i]
 | 
			
		||||
            i = i+1
 | 
			
		||||
    arr[i], arr[high] = arr[high], arr[i]
 | 
			
		||||
    return i
 | 
			
		||||
 | 
			
		||||
def quick_sort(arr, low, high):
 | 
			
		||||
    if low < high:
 | 
			
		||||
        pi = partition(arr, low,
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,77 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
# you could tune the prompt based on your own model,
 | 
			
		||||
# here the prompt tuning refers to https://huggingface.co/IDEA-CCNL/Ziya-Coding-34B-v1.0
 | 
			
		||||
ZIYA_PROMPT_FORMAT = "<human>: \n{prompt}\n<bot>: \n"
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Ziya model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="IDEA-CCNL/Ziya-Coding-34B-v1.0",
 | 
			
		||||
                        help='The huggingface repo id for the Ziya model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="def quick_sort(arr):\n",
 | 
			
		||||
                        help='Prompt to infer') 
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=128,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    from bigdl.llm.transformers import AutoModelForCausalLM
 | 
			
		||||
    # enabling `use_cache=True` allows the model to utilize the previous
 | 
			
		||||
    # key/values attentions to speed up decoding;
 | 
			
		||||
    # to obtain optimal performance with BigDL-LLM INT4 optimizations,
 | 
			
		||||
    # it is important to set use_cache=True for Ziya models
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 load_in_4bit=True,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 use_cache=True)
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        prompt = ZIYA_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
			
		||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                max_new_tokens=args.n_predict,
 | 
			
		||||
                                do_sample = True,
 | 
			
		||||
                                top_p = 0.85,
 | 
			
		||||
                                temperature = 0.8,
 | 
			
		||||
                                repetition_penalty = 0.95,
 | 
			
		||||
                                eos_token_id = tokenizer.eos_token_id,
 | 
			
		||||
                                pad_token_id = tokenizer.pad_token_id,
 | 
			
		||||
                                )
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        output_str = tokenizer.batch_decode(output)[0]
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Prompt', '-'*20)
 | 
			
		||||
        print(prompt)
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(output_str)
 | 
			
		||||
							
								
								
									
										78
									
								
								python/llm/example/CPU/PyTorch-Models/Model/ziya/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										78
									
								
								python/llm/example/CPU/PyTorch-Models/Model/ziya/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,78 @@
 | 
			
		|||
# Ziya
 | 
			
		||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Ziya models. For illustration purposes, we utilize the [IDEA-CCNL/Ziya-Coding-34B-v1.0](https://huggingface.co/IDEA-CCNL/Ziya-Coding-34B-v1.0) as a reference Ziya model.
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `generate()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a Ziya model to predict the next N tokens using `generate()` API, with BigDL-LLM 'optimize_model' API.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
After installing conda, create a Python environment for BigDL-LLM:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
			
		||||
pip install einops  # additional package required for Ziya to conduct generation
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Run
 | 
			
		||||
After setting up the Python environment, you could run the example by following steps.
 | 
			
		||||
#### 2.1 Client
 | 
			
		||||
On client Windows machines, it is recommended to run directly with full utilization of all cores:
 | 
			
		||||
```powershell
 | 
			
		||||
python ./generate.py --prompt 'def quick_sort(arr):\n'
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
			
		||||
 | 
			
		||||
#### 2.2 Server
 | 
			
		||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
			
		||||
 | 
			
		||||
E.g. on Linux,
 | 
			
		||||
```bash
 | 
			
		||||
# set BigDL-LLM env variables
 | 
			
		||||
source bigdl-llm-init
 | 
			
		||||
 | 
			
		||||
# e.g. for a server with 48 cores per socket
 | 
			
		||||
export OMP_NUM_THREADS=48
 | 
			
		||||
numactl -C 0-47 -m 0 python ./generate.py
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
 | 
			
		||||
 | 
			
		||||
#### 2.3 Arguments Info
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the Ziya model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'IDEA-CCNL/Ziya-Coding-34B-v1.0'`.
 | 
			
		||||
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `def quick_sort(arr):\n`.
 | 
			
		||||
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `128`.
 | 
			
		||||
 | 
			
		||||
#### 2.4 Sample Output
 | 
			
		||||
#### [IDEA-CCNL/Ziya-Coding-34B-v1.0](https://huggingface.co/IDEA-CCNL/Ziya-Coding-34B-v1.0)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
<human>: 
 | 
			
		||||
def quick_sort(arr):\n
 | 
			
		||||
<bot>: 
 | 
			
		||||
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
<s> <human>: 
 | 
			
		||||
def quick_sort(arr):\n
 | 
			
		||||
<bot>: 
 | 
			
		||||
def partition(arr, low, high):
 | 
			
		||||
 | 
			
		||||
    i = (low-1)
 | 
			
		||||
    pivot = arr[high]
 | 
			
		||||
    for j in range(low, high):
 | 
			
		||||
        if arr[j] <= pivot:
 | 
			
		||||
            arr[i], arr[j] = arr[j], arr[i]
 | 
			
		||||
            i = i+1
 | 
			
		||||
    arr[i], arr[high] = arr[high], arr[i]
 | 
			
		||||
    return i
 | 
			
		||||
 | 
			
		||||
def quick_sort(arr, low, high):
 | 
			
		||||
    if low < high:
 | 
			
		||||
        pi = partition(arr, low,
 | 
			
		||||
```
 | 
			
		||||
							
								
								
									
										78
									
								
								python/llm/example/CPU/PyTorch-Models/Model/ziya/generate.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										78
									
								
								python/llm/example/CPU/PyTorch-Models/Model/ziya/generate.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,78 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
ZIYA_PROMPT_FORMAT = "<human>: \n{prompt}\n<bot>: \n"
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Ziya model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="IDEA-CCNL/Ziya-Coding-34B-v1.0",
 | 
			
		||||
                        help='The huggingface repo id for the Ziya model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="def quick_sort(arr):\n",
 | 
			
		||||
                        help='Prompt to infer') 
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=128,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    from transformers import AutoModelForCausalLM
 | 
			
		||||
    from bigdl.llm import optimize_model
 | 
			
		||||
    # enabling `use_cache=True` allows the model to utilize the previous
 | 
			
		||||
    # key/values attentions to speed up decoding;
 | 
			
		||||
    # to obtain optimal performance with BigDL-LLM `optimization_model` API optimizations,
 | 
			
		||||
    # it is important to set use_cache=True for Ziya models
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 use_cache=True)
 | 
			
		||||
    model = optimize_model(model)
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
    
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        prompt = ZIYA_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
			
		||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
 
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                max_new_tokens=args.n_predict,
 | 
			
		||||
                                do_sample = True,
 | 
			
		||||
                                top_p = 0.85,
 | 
			
		||||
                                temperature = 0.8,
 | 
			
		||||
                                repetition_penalty = 0.95,
 | 
			
		||||
                                eos_token_id = tokenizer.eos_token_id,
 | 
			
		||||
                                pad_token_id = tokenizer.pad_token_id,
 | 
			
		||||
                                )
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        output_str = tokenizer.batch_decode(output)[0]
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Prompt', '-'*20)
 | 
			
		||||
        print(prompt)
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(output_str)
 | 
			
		||||
       
 | 
			
		||||
		Loading…
	
		Reference in a new issue