Add ziya CPU example (#10114)
* ziya on CPU * add README for ziya * specify use_cache * add arc CPU * update prompt format * update link * add comments to emphasize use_cache * update pip cmd
This commit is contained in:
parent
71875ebc24
commit
add3899311
6 changed files with 323 additions and 1 deletions
|
|
@ -185,6 +185,7 @@ Over 40 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
|
||||||
| RWKV5 | | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
|
| RWKV5 | | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
|
||||||
| Bark | [link](python/llm/example/CPU/PyTorch-Models/Model/bark) | [link](python/llm/example/GPU/PyTorch-Models/Model/bark) |
|
| Bark | [link](python/llm/example/CPU/PyTorch-Models/Model/bark) | [link](python/llm/example/GPU/PyTorch-Models/Model/bark) |
|
||||||
| SpeechT5 | | [link](python/llm/example/GPU/PyTorch-Models/Model/speech-t5) |
|
| SpeechT5 | | [link](python/llm/example/GPU/PyTorch-Models/Model/speech-t5) |
|
||||||
|
| Ziya-Coding-34B-v1.0 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
|
||||||
|
|
||||||
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
|
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -81,7 +81,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
|
||||||
| RWKV5 | | [link](example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
|
| RWKV5 | | [link](example/GPU/HF-Transformers-AutoModels/Model/rwkv5) |
|
||||||
| Bark | [link](example/CPU/PyTorch-Models/Model/bark) | [link](example/GPU/PyTorch-Models/Model/bark) |
|
| Bark | [link](example/CPU/PyTorch-Models/Model/bark) | [link](example/GPU/PyTorch-Models/Model/bark) |
|
||||||
| SpeechT5 | | [link](example/GPU/PyTorch-Models/Model/speech-t5) |
|
| SpeechT5 | | [link](example/GPU/PyTorch-Models/Model/speech-t5) |
|
||||||
|
| Ziya-Coding-34B-v1.0 | [link](example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
|
||||||
|
|
||||||
### Working with `bigdl-llm`
|
### Working with `bigdl-llm`
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,88 @@
|
||||||
|
# Ziya
|
||||||
|
|
||||||
|
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Ziya models. For illustration purposes, we utilize the [IDEA-CCNL/Ziya-Coding-34B-v1.0](https://huggingface.co/IDEA-CCNL/Ziya-Coding-34B-v1.0) as a reference Ziya model.
|
||||||
|
|
||||||
|
> **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git).
|
||||||
|
>
|
||||||
|
> BigDL-LLM optimizes the *Transformers* model in INT4 precision at runtime, and thus no explicit conversion is needed.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for a Ziya model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||||
|
### 1. Install
|
||||||
|
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||||
|
|
||||||
|
After installing conda, create a Python environment for BigDL-LLM:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
|
||||||
|
pip install einops # additional package required for Ziya to conduct generation
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Run
|
||||||
|
After setting up the Python environment, you could run the example by following steps.
|
||||||
|
|
||||||
|
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||||
|
>
|
||||||
|
> Please select the appropriate size of the Ziya model based on the capabilities of your machine.
|
||||||
|
|
||||||
|
#### 2.1 Client
|
||||||
|
On client Windows machines, it is recommended to run directly with full utilization of all cores:
|
||||||
|
```powershell
|
||||||
|
python ./generate.py --prompt 'def quick_sort(arr):\n'
|
||||||
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
|
#### 2.2 Server
|
||||||
|
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||||
|
|
||||||
|
E.g. on Linux,
|
||||||
|
```bash
|
||||||
|
# set BigDL-LLM env variables
|
||||||
|
source bigdl-llm-init
|
||||||
|
|
||||||
|
# e.g. for a server with 48 cores per socket
|
||||||
|
export OMP_NUM_THREADS=48
|
||||||
|
numactl -C 0-47 -m 0 python ./generate.py --prompt 'def quick_sort(arr):\n'
|
||||||
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
|
#### 2.3 Arguments Info
|
||||||
|
In the example, several arguments can be passed to satisfy your requirements:
|
||||||
|
|
||||||
|
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the Ziya model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'IDEA-CCNL/Ziya-Coding-34B-v1.0'`.
|
||||||
|
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `def quick_sort(arr):\n`.
|
||||||
|
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `128`.
|
||||||
|
|
||||||
|
#### 2.4 Sample Output
|
||||||
|
#### [IDEA-CCNL/Ziya-Coding-34B-v1.0](https://huggingface.co/IDEA-CCNL/Ziya-Coding-34B-v1.0)
|
||||||
|
```log
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
<human>:
|
||||||
|
def quick_sort(arr):\n
|
||||||
|
<bot>:
|
||||||
|
|
||||||
|
-------------------- Output --------------------
|
||||||
|
<s> <human>:
|
||||||
|
def quick_sort(arr):\n
|
||||||
|
<bot>:
|
||||||
|
def partition(arr, low, high):
|
||||||
|
|
||||||
|
i = (low-1)
|
||||||
|
pivot = arr[high]
|
||||||
|
for j in range(low, high):
|
||||||
|
if arr[j] <= pivot:
|
||||||
|
arr[i], arr[j] = arr[j], arr[i]
|
||||||
|
i = i+1
|
||||||
|
arr[i], arr[high] = arr[high], arr[i]
|
||||||
|
return i
|
||||||
|
|
||||||
|
def quick_sort(arr, low, high):
|
||||||
|
if low < high:
|
||||||
|
pi = partition(arr, low,
|
||||||
|
```
|
||||||
|
|
@ -0,0 +1,77 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
# here the prompt tuning refers to https://huggingface.co/IDEA-CCNL/Ziya-Coding-34B-v1.0
|
||||||
|
ZIYA_PROMPT_FORMAT = "<human>: \n{prompt}\n<bot>: \n"
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Ziya model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="IDEA-CCNL/Ziya-Coding-34B-v1.0",
|
||||||
|
help='The huggingface repo id for the Ziya model to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--prompt', type=str, default="def quick_sort(arr):\n",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=128,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
|
||||||
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||||
|
# enabling `use_cache=True` allows the model to utilize the previous
|
||||||
|
# key/values attentions to speed up decoding;
|
||||||
|
# to obtain optimal performance with BigDL-LLM INT4 optimizations,
|
||||||
|
# it is important to set use_cache=True for Ziya models
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
trust_remote_code=True,
|
||||||
|
use_cache=True)
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||||
|
trust_remote_code=True)
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = ZIYA_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
st = time.time()
|
||||||
|
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict,
|
||||||
|
do_sample = True,
|
||||||
|
top_p = 0.85,
|
||||||
|
temperature = 0.8,
|
||||||
|
repetition_penalty = 0.95,
|
||||||
|
eos_token_id = tokenizer.eos_token_id,
|
||||||
|
pad_token_id = tokenizer.pad_token_id,
|
||||||
|
)
|
||||||
|
end = time.time()
|
||||||
|
output_str = tokenizer.batch_decode(output)[0]
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Prompt', '-'*20)
|
||||||
|
print(prompt)
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
78
python/llm/example/CPU/PyTorch-Models/Model/ziya/README.md
Normal file
78
python/llm/example/CPU/PyTorch-Models/Model/ziya/README.md
Normal file
|
|
@ -0,0 +1,78 @@
|
||||||
|
# Ziya
|
||||||
|
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Ziya models. For illustration purposes, we utilize the [IDEA-CCNL/Ziya-Coding-34B-v1.0](https://huggingface.co/IDEA-CCNL/Ziya-Coding-34B-v1.0) as a reference Ziya model.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for a Ziya model to predict the next N tokens using `generate()` API, with BigDL-LLM 'optimize_model' API.
|
||||||
|
### 1. Install
|
||||||
|
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||||
|
|
||||||
|
After installing conda, create a Python environment for BigDL-LLM:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
|
||||||
|
pip install einops # additional package required for Ziya to conduct generation
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Run
|
||||||
|
After setting up the Python environment, you could run the example by following steps.
|
||||||
|
#### 2.1 Client
|
||||||
|
On client Windows machines, it is recommended to run directly with full utilization of all cores:
|
||||||
|
```powershell
|
||||||
|
python ./generate.py --prompt 'def quick_sort(arr):\n'
|
||||||
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
|
#### 2.2 Server
|
||||||
|
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||||
|
|
||||||
|
E.g. on Linux,
|
||||||
|
```bash
|
||||||
|
# set BigDL-LLM env variables
|
||||||
|
source bigdl-llm-init
|
||||||
|
|
||||||
|
# e.g. for a server with 48 cores per socket
|
||||||
|
export OMP_NUM_THREADS=48
|
||||||
|
numactl -C 0-47 -m 0 python ./generate.py
|
||||||
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
|
#### 2.3 Arguments Info
|
||||||
|
In the example, several arguments can be passed to satisfy your requirements:
|
||||||
|
|
||||||
|
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the Ziya model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'IDEA-CCNL/Ziya-Coding-34B-v1.0'`.
|
||||||
|
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `def quick_sort(arr):\n`.
|
||||||
|
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `128`.
|
||||||
|
|
||||||
|
#### 2.4 Sample Output
|
||||||
|
#### [IDEA-CCNL/Ziya-Coding-34B-v1.0](https://huggingface.co/IDEA-CCNL/Ziya-Coding-34B-v1.0)
|
||||||
|
```log
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
<human>:
|
||||||
|
def quick_sort(arr):\n
|
||||||
|
<bot>:
|
||||||
|
|
||||||
|
-------------------- Output --------------------
|
||||||
|
<s> <human>:
|
||||||
|
def quick_sort(arr):\n
|
||||||
|
<bot>:
|
||||||
|
def partition(arr, low, high):
|
||||||
|
|
||||||
|
i = (low-1)
|
||||||
|
pivot = arr[high]
|
||||||
|
for j in range(low, high):
|
||||||
|
if arr[j] <= pivot:
|
||||||
|
arr[i], arr[j] = arr[j], arr[i]
|
||||||
|
i = i+1
|
||||||
|
arr[i], arr[high] = arr[high], arr[i]
|
||||||
|
return i
|
||||||
|
|
||||||
|
def quick_sort(arr, low, high):
|
||||||
|
if low < high:
|
||||||
|
pi = partition(arr, low,
|
||||||
|
```
|
||||||
78
python/llm/example/CPU/PyTorch-Models/Model/ziya/generate.py
Normal file
78
python/llm/example/CPU/PyTorch-Models/Model/ziya/generate.py
Normal file
|
|
@ -0,0 +1,78 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
|
||||||
|
ZIYA_PROMPT_FORMAT = "<human>: \n{prompt}\n<bot>: \n"
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Ziya model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="IDEA-CCNL/Ziya-Coding-34B-v1.0",
|
||||||
|
help='The huggingface repo id for the Ziya model to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--prompt', type=str, default="def quick_sort(arr):\n",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=128,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
|
||||||
|
from transformers import AutoModelForCausalLM
|
||||||
|
from bigdl.llm import optimize_model
|
||||||
|
# enabling `use_cache=True` allows the model to utilize the previous
|
||||||
|
# key/values attentions to speed up decoding;
|
||||||
|
# to obtain optimal performance with BigDL-LLM `optimization_model` API optimizations,
|
||||||
|
# it is important to set use_cache=True for Ziya models
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||||
|
trust_remote_code=True,
|
||||||
|
use_cache=True)
|
||||||
|
model = optimize_model(model)
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||||
|
trust_remote_code=True)
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = ZIYA_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
|
||||||
|
st = time.time()
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict,
|
||||||
|
do_sample = True,
|
||||||
|
top_p = 0.85,
|
||||||
|
temperature = 0.8,
|
||||||
|
repetition_penalty = 0.95,
|
||||||
|
eos_token_id = tokenizer.eos_token_id,
|
||||||
|
pad_token_id = tokenizer.pad_token_id,
|
||||||
|
)
|
||||||
|
end = time.time()
|
||||||
|
output_str = tokenizer.batch_decode(output)[0]
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Prompt', '-'*20)
|
||||||
|
print(prompt)
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
|
|
||||||
Loading…
Reference in a new issue