optimize phi3 1st token performance (#10981)
This commit is contained in:
		
							parent
							
								
									cfed76b2ed
								
							
						
					
					
						commit
						ad96f32ce0
					
				
					 2 changed files with 26 additions and 13 deletions
				
			
		| 
						 | 
				
			
			@ -42,6 +42,7 @@ from ipex_llm.transformers.models.utils import (
 | 
			
		|||
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_new_esimd_sdp_fp16, use_quantize_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_sdp_fp8, restore_fp8_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_sdp_causal
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
 | 
			
		||||
 | 
			
		||||
from typing import Optional, Tuple, List
 | 
			
		||||
| 
						 | 
				
			
			@ -148,6 +149,10 @@ def attention_forward(
 | 
			
		|||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
        if use_sdp_causal(q_len, kv_seq_len, query_states, self.training):
 | 
			
		||||
            import linear_q4_0
 | 
			
		||||
            attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
 | 
			
		||||
        else:
 | 
			
		||||
            # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
            key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
            value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -384,6 +384,14 @@ def use_sdp_fp8(q_len, k_len, query_states):
 | 
			
		|||
    return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def use_sdp_causal(q_len, kv_len, query_states, training):
 | 
			
		||||
    return (
 | 
			
		||||
        q_len == kv_len     # first token
 | 
			
		||||
        and query_states.device.type == "xpu"   # GPU
 | 
			
		||||
        and not query_states.requires_grad and not training     # no training
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mlp_fusion_check(x, qtype, training):
 | 
			
		||||
    invalidInputError(x.dim() == 2,
 | 
			
		||||
                      "Here input x's dim should be 2.")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue