optimize phi3 1st token performance (#10981)
This commit is contained in:
parent
cfed76b2ed
commit
ad96f32ce0
2 changed files with 26 additions and 13 deletions
|
|
@ -42,6 +42,7 @@ from ipex_llm.transformers.models.utils import (
|
|||
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
|
||||
from ipex_llm.transformers.models.utils import use_new_esimd_sdp_fp16, use_quantize_kv_cache
|
||||
from ipex_llm.transformers.models.utils import use_sdp_fp8, restore_fp8_kv_cache
|
||||
from ipex_llm.transformers.models.utils import use_sdp_causal
|
||||
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
|
||||
|
||||
from typing import Optional, Tuple, List
|
||||
|
|
@ -148,22 +149,26 @@ def attention_forward(
|
|||
if isinstance(past_key_value, DynamicFp8Cache):
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
query_states.dtype)
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
if use_sdp_causal(q_len, kv_seq_len, query_states, self.training):
|
||||
import linear_q4_0
|
||||
attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
|
||||
else:
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
attn_weights = torch.matmul(query_states,
|
||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
attn_weights = torch.matmul(query_states,
|
||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attention_mask is not None:
|
||||
attn_weights = attn_weights + attention_mask
|
||||
if attention_mask is not None:
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(value_states.dtype)
|
||||
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
||||
training=self.training)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
# upcast attention to fp32
|
||||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(value_states.dtype)
|
||||
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
||||
training=self.training)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
|
|
|||
|
|
@ -384,6 +384,14 @@ def use_sdp_fp8(q_len, k_len, query_states):
|
|||
return True
|
||||
|
||||
|
||||
def use_sdp_causal(q_len, kv_len, query_states, training):
|
||||
return (
|
||||
q_len == kv_len # first token
|
||||
and query_states.device.type == "xpu" # GPU
|
||||
and not query_states.requires_grad and not training # no training
|
||||
)
|
||||
|
||||
|
||||
def mlp_fusion_check(x, qtype, training):
|
||||
invalidInputError(x.dim() == 2,
|
||||
"Here input x's dim should be 2.")
|
||||
|
|
|
|||
Loading…
Reference in a new issue