LLM: add benchmark script for Max gpu and ipex fp16 gpu (#9112)

* add pvc bash

* meet code review

* rename to run-max-gpu.sh
This commit is contained in:
Ruonan Wang 2023-10-10 10:18:41 +08:00 committed by GitHub
parent 6264381f2e
commit ad7d9231f5
4 changed files with 70 additions and 4 deletions

View file

@ -27,8 +27,9 @@ test_api:
- "native_int4"
- "optimize_model"
- "pytorch_autocast_bf16"
# - "transformer_int4_gpu" # on arc
# - "optimize_model_gpu" # on arc
# - "ipex_fp16_gpu" # on Intel GPU
# - "transformer_int4_gpu" # on Intel GPU
# - "optimize_model_gpu" # on Intel GPU
```
## Run

View file

@ -13,5 +13,6 @@ test_api:
- "native_int4"
- "optimize_model"
- "pytorch_autocast_bf16"
# - "transformer_int4_gpu" # on arc
# - "optimize_model_gpu" # on arc
# - "ipex_fp16_gpu" # on Intel GPU
# - "transformer_int4_gpu" # on Intel GPU
# - "optimize_model_gpu" # on Intel GPU

View file

@ -0,0 +1,7 @@
source /opt/intel/oneapi/setvars.sh
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1
python run.py # make sure config YAML file

View file

@ -47,6 +47,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
elif test_api == 'pytorch_autocast_bf16':
result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
elif test_api == 'ipex_fp16_gpu':
result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
for in_out_pair in in_out_pairs:
results.append([repo_id,
@ -388,6 +390,61 @@ def run_optimize_model_gpu(repo_id,
return result
def run_ipex_fp16_gpu(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials):
from transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, GPTJForCausalLM
import intel_extension_for_pytorch as ipex
model_path = get_model_path(repo_id, local_model_hub)
st = time.perf_counter()
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.half().to('xpu')
else:
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, use_cache=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.half().to('xpu')
if isinstance(model, GPTJForCausalLM):
# For gpt-j model family, this optimization can provide a better performance.
model = ipex.optimize(model.eval(), inplace=True)
end = time.perf_counter()
print(">> loading of model costs {}s".format(end - st))
model = BenchmarkWrapper(model)
result = {}
with torch.inference_mode():
for in_out in in_out_pairs:
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
input_str = open(f"prompt/{in_len}.txt", 'r').read()
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
torch.xpu.synchronize()
end = time.perf_counter()
output_ids = output_ids.cpu()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
print(output[0])
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
torch.xpu.empty_cache()
return result
if __name__ == '__main__':
from omegaconf import OmegaConf
conf = OmegaConf.load(f'{current_dir}/config.yaml')