refactor mllama, gpt2 and internvl (#12602)
This commit is contained in:
		
							parent
							
								
									7aaf02f602
								
							
						
					
					
						commit
						ad2dc965c5
					
				
					 3 changed files with 21 additions and 67 deletions
				
			
		| 
						 | 
				
			
			@ -15,6 +15,7 @@
 | 
			
		|||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_sdp_non_causal
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -44,10 +45,11 @@ def gpt2_attention_attn(
 | 
			
		|||
        else:
 | 
			
		||||
            attention_mask = attention_mask.expand(-1, -1, seq_len, seq_len)
 | 
			
		||||
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
        attn_output = xe_addons.sdp_non_causal(query, key.contiguous(),
 | 
			
		||||
                                               value.contiguous(), attention_mask)
 | 
			
		||||
        attn_output = scaled_dot_product_attention(
 | 
			
		||||
            query, key.contiguous(), value.contiguous(),
 | 
			
		||||
            attention_mask, False
 | 
			
		||||
        )
 | 
			
		||||
        return attn_output, attn_weights
 | 
			
		||||
    # ipex-llm changes end
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -26,6 +26,7 @@
 | 
			
		|||
 | 
			
		||||
import torch
 | 
			
		||||
from ipex_llm.utils.common.log4Error import invalidInputError
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_sdp_non_causal
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -177,8 +178,10 @@ def intern_attention_forward(self, x: torch.Tensor) -> torch.Tensor:
 | 
			
		|||
        k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    if use_sdp_non_causal(self.head_dim, q.device, q.dtype):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        x = xe_addons.sdp_non_causal(q, k.contiguous(), v.contiguous(), None)
 | 
			
		||||
        x = scaled_dot_product_attention(
 | 
			
		||||
            q, k.contiguous(), v.contiguous(),
 | 
			
		||||
            None, False, self.scale
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        attn = ((q * self.scale) @ k.transpose(-2, -1))
 | 
			
		||||
        attn = attn.softmax(dim=-1)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -32,7 +32,6 @@
 | 
			
		|||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
import torch
 | 
			
		||||
 | 
			
		||||
from typing import Optional, Tuple, Union
 | 
			
		||||
| 
						 | 
				
			
			@ -40,11 +39,10 @@ from transformers.cache_utils import Cache
 | 
			
		|||
from transformers.modeling_outputs import BaseModelOutputWithPast
 | 
			
		||||
from transformers.models.mllama.modeling_mllama import MllamaVisionAttention
 | 
			
		||||
from transformers.models.mllama.modeling_mllama import MllamaTextSelfAttention
 | 
			
		||||
from transformers.models.mllama.modeling_mllama import repeat_kv
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal, use_sdp_non_causal
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
 | 
			
		||||
from ipex_llm.transformers.models.common import merge_qkv_base, attention_softmax
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
 | 
			
		||||
from ipex_llm.transformers.utils import invalidInputError
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -67,27 +65,11 @@ def mllama_vision_attention_forward(
 | 
			
		|||
    qkv = qkv.transpose(1, 2)
 | 
			
		||||
    query, key, value = qkv.chunk(3, dim=1)
 | 
			
		||||
 | 
			
		||||
    if attention_mask is not None:  # no matter the length, we just slice it
 | 
			
		||||
        causal_mask = attention_mask[:, :, :, : key.shape[-2]]
 | 
			
		||||
    else:
 | 
			
		||||
        causal_mask = None
 | 
			
		||||
 | 
			
		||||
    if use_sdp_non_causal(self.head_dim, query.device, query.dtype):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        attn_output = xe_addons.sdp_non_causal(query, key.contiguous(),
 | 
			
		||||
                                               value.contiguous(), causal_mask)
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
    else:
 | 
			
		||||
        attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + causal_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        from ipex_llm.transformers.models.common import attention_softmax
 | 
			
		||||
        attn_weights = attention_softmax(attn_weights)
 | 
			
		||||
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value)
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    attn_output = scaled_dot_product_attention(
 | 
			
		||||
        query, key.contiguous(), value.contiguous(),
 | 
			
		||||
        attention_softmax, False
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, -1)
 | 
			
		||||
| 
						 | 
				
			
			@ -278,44 +260,11 @@ def mllama_cross_attention_forward(
 | 
			
		|||
            past_key_value.value_cache[self.layer_idx],
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = key_states.size(2)
 | 
			
		||||
    if attention_mask is not None:  # no matter the length, we just slice it
 | 
			
		||||
        causal_mask = attention_mask[:, :, :, :kv_seq_len]
 | 
			
		||||
    else:
 | 
			
		||||
        causal_mask = None
 | 
			
		||||
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, causal_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
 | 
			
		||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
 | 
			
		||||
                                                   value_states, causal_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp_causal(query_states, key_states,
 | 
			
		||||
                                               value_states, causal_mask)
 | 
			
		||||
    else:
 | 
			
		||||
        if isinstance(past_key_value, DynamicFp8Cache):
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
        # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        if causal_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + causal_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = attention_softmax(attn_weights)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
    attn_output = scaled_dot_product_attention(
 | 
			
		||||
        query_states, key_states, value_states,
 | 
			
		||||
        attention_mask, q_len == key_states.size(2)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, -1)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue