FIX: Qwen1.5-GPTQ-Int4 inference error (#11432)

* merge_qkv if quant_method is 'gptq'

* fix python style checks

* refactor

* update GPU example
This commit is contained in:
Shaojun Liu 2024-06-26 15:36:22 +08:00 committed by GitHub
parent 99cd16ef9f
commit ab9f7f3ac5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 40 additions and 17 deletions

View file

@ -18,7 +18,7 @@ conda activate llm
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
pip install transformers==4.34.0
BUILD_CUDA_EXT=0 pip install git+https://github.com/PanQiWei/AutoGPTQ.git@1de9ab6
pip install optimum==0.14.0
pip install optimum==1.14.0
```
On Windows:
@ -30,7 +30,7 @@ pip install --pre --upgrade ipex-llm[all]
pip install transformers==4.34.0
set BUILD_CUDA_EXT=0
pip install git+https://github.com/PanQiWei/AutoGPTQ.git@1de9ab6
pip install optimum==0.14.0
pip install optimum==1.14.0
```
### 2. Run

View file

@ -19,7 +19,7 @@ import time
import argparse
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import LlamaTokenizer, GPTQConfig
from transformers import LlamaTokenizer, AutoTokenizer
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
@ -50,7 +50,10 @@ if __name__ == '__main__':
trust_remote_code=True,)
# Load tokenizer
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
if "qwen" in model_path.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():

View file

@ -18,7 +18,7 @@ import torch
import time
import argparse
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer, GPTQConfig
from transformers import AutoTokenizer, AutoTokenizer
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
@ -48,9 +48,11 @@ if __name__ == '__main__':
torch_dtype=torch.float,
trust_remote_code=True,).to("xpu")
print(model)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
if "qwen" in model_path.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():

View file

@ -732,10 +732,17 @@ def _optimize_pre(model):
model.apply(split_mlp)
# for qwen2
if model.config.model_type == "qwen2":
from ipex_llm.transformers.models.qwen2 import merge_qkv
model.apply(merge_qkv)
from ipex_llm.transformers.models.qwen2 import padding_mlp
model.apply(padding_mlp)
# Skip merge_qkv and padding_mlp if quant_method is 'gptq'
should_apply_merge_qkv = (
not hasattr(model.config, "quantization_config") or
not hasattr(model.config.quantization_config, "quant_method") or
model.config.quantization_config.quant_method != "gptq"
)
if should_apply_merge_qkv:
from ipex_llm.transformers.models.qwen2 import merge_qkv
model.apply(merge_qkv)
from ipex_llm.transformers.models.qwen2 import padding_mlp
model.apply(padding_mlp)
if model.config.model_type == "qwen2_moe":
from ipex_llm.transformers.models.qwen2_moe import merge_qkv
model.apply(merge_qkv)

View file

@ -405,12 +405,23 @@ def qwen2_attention_forward(
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
qkv = self.qkv_proj(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_key_value_heads,
self.num_key_value_heads], dim=1)
if hasattr(self, 'qkv_proj') and self.qkv_proj is not None:
qkv = self.qkv_proj(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_key_value_heads,
self.num_key_value_heads], dim=1)
else:
# when quant_method is 'gptq'
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) \
.transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) \
.transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None: