FIX: Qwen1.5-GPTQ-Int4 inference error (#11432)
* merge_qkv if quant_method is 'gptq' * fix python style checks * refactor * update GPU example
This commit is contained in:
parent
99cd16ef9f
commit
ab9f7f3ac5
5 changed files with 40 additions and 17 deletions
|
|
@ -18,7 +18,7 @@ conda activate llm
|
|||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
pip install transformers==4.34.0
|
||||
BUILD_CUDA_EXT=0 pip install git+https://github.com/PanQiWei/AutoGPTQ.git@1de9ab6
|
||||
pip install optimum==0.14.0
|
||||
pip install optimum==1.14.0
|
||||
```
|
||||
|
||||
On Windows:
|
||||
|
|
@ -30,7 +30,7 @@ pip install --pre --upgrade ipex-llm[all]
|
|||
pip install transformers==4.34.0
|
||||
set BUILD_CUDA_EXT=0
|
||||
pip install git+https://github.com/PanQiWei/AutoGPTQ.git@1de9ab6
|
||||
pip install optimum==0.14.0
|
||||
pip install optimum==1.14.0
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ import time
|
|||
import argparse
|
||||
|
||||
from ipex_llm.transformers import AutoModelForCausalLM
|
||||
from transformers import LlamaTokenizer, GPTQConfig
|
||||
from transformers import LlamaTokenizer, AutoTokenizer
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
|
||||
|
|
@ -50,7 +50,10 @@ if __name__ == '__main__':
|
|||
trust_remote_code=True,)
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
if "qwen" in model_path.lower():
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
|
|
|
|||
|
|
@ -18,7 +18,7 @@ import torch
|
|||
import time
|
||||
import argparse
|
||||
from ipex_llm.transformers import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTQConfig
|
||||
from transformers import AutoTokenizer, AutoTokenizer
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
|
||||
|
|
@ -48,9 +48,11 @@ if __name__ == '__main__':
|
|||
torch_dtype=torch.float,
|
||||
trust_remote_code=True,).to("xpu")
|
||||
|
||||
print(model)
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
if "qwen" in model_path.lower():
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
|
|
|
|||
|
|
@ -732,10 +732,17 @@ def _optimize_pre(model):
|
|||
model.apply(split_mlp)
|
||||
# for qwen2
|
||||
if model.config.model_type == "qwen2":
|
||||
from ipex_llm.transformers.models.qwen2 import merge_qkv
|
||||
model.apply(merge_qkv)
|
||||
from ipex_llm.transformers.models.qwen2 import padding_mlp
|
||||
model.apply(padding_mlp)
|
||||
# Skip merge_qkv and padding_mlp if quant_method is 'gptq'
|
||||
should_apply_merge_qkv = (
|
||||
not hasattr(model.config, "quantization_config") or
|
||||
not hasattr(model.config.quantization_config, "quant_method") or
|
||||
model.config.quantization_config.quant_method != "gptq"
|
||||
)
|
||||
if should_apply_merge_qkv:
|
||||
from ipex_llm.transformers.models.qwen2 import merge_qkv
|
||||
model.apply(merge_qkv)
|
||||
from ipex_llm.transformers.models.qwen2 import padding_mlp
|
||||
model.apply(padding_mlp)
|
||||
if model.config.model_type == "qwen2_moe":
|
||||
from ipex_llm.transformers.models.qwen2_moe import merge_qkv
|
||||
model.apply(merge_qkv)
|
||||
|
|
|
|||
|
|
@ -405,12 +405,23 @@ def qwen2_attention_forward(
|
|||
bsz, q_len, _ = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
|
||||
qkv = self.qkv_proj(hidden_states)
|
||||
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
||||
qkv = qkv.transpose(1, 2)
|
||||
query_states, key_states, value_states = qkv.split([self.num_heads,
|
||||
self.num_key_value_heads,
|
||||
self.num_key_value_heads], dim=1)
|
||||
if hasattr(self, 'qkv_proj') and self.qkv_proj is not None:
|
||||
qkv = self.qkv_proj(hidden_states)
|
||||
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
||||
qkv = qkv.transpose(1, 2)
|
||||
query_states, key_states, value_states = qkv.split([self.num_heads,
|
||||
self.num_key_value_heads,
|
||||
self.num_key_value_heads], dim=1)
|
||||
else:
|
||||
# when quant_method is 'gptq'
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) \
|
||||
.transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) \
|
||||
.transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
|
|
|
|||
Loading…
Reference in a new issue