Support MiniCPM-V-2_6 multi-modal benchmarking with latency text streamer (#11963)
* Support MiniCPM-V-2_6 multi-modal benchmarking with latency text streamer * Style fixes
This commit is contained in:
parent
2e49e1f8e9
commit
a9e485eb1b
2 changed files with 51 additions and 1 deletions
|
|
@ -1997,6 +1997,11 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
resampler_module_name = model.resampler.__class__.__module__
|
||||
resampler_module = importlib.import_module(resampler_module_name)
|
||||
resampler_module._in_projection_packed = _in_projection_packed
|
||||
|
||||
# for minicpm-v-2_6 benchmarking purposes
|
||||
from ipex_llm.transformers.models.minicpmv import minicpmv_decode_stream_wrapper
|
||||
minicpmv_decode_stream = minicpmv_decode_stream_wrapper(module.MiniCPMV._decode_stream)
|
||||
model._decode_stream = MethodType(minicpmv_decode_stream, model)
|
||||
elif model.vpm.config.model_type == "idefics2":
|
||||
# MiniCPM-V 2.5
|
||||
from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
|
||||
|
|
|
|||
|
|
@ -13,15 +13,22 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# Some parts of this file is adapted from
|
||||
# https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/modeling_minicpmv.py
|
||||
# which is licensed under Apache License 2.0:
|
||||
#
|
||||
# https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE
|
||||
#
|
||||
|
||||
|
||||
import math
|
||||
import torch
|
||||
from threading import Thread
|
||||
from typing import Optional, List
|
||||
from torch.nn.functional import linear
|
||||
from ipex_llm.transformers.models.common import merge_qkv_base
|
||||
from ipex_llm.transformers.models.common import attention_softmax
|
||||
from transformers import AutoProcessor
|
||||
from transformers import AutoProcessor, TextIteratorStreamer
|
||||
from transformers.generation.logits_process import RepetitionPenaltyLogitsProcessor
|
||||
|
||||
|
||||
|
|
@ -111,6 +118,38 @@ def _in_projection_packed(
|
|||
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
||||
|
||||
|
||||
# for minicpm-v-2_6 benchmarking purposes
|
||||
def minicpmv_decode_stream_wrapper(origin_decode_stream):
|
||||
def minicpv_decode_stream(
|
||||
self,
|
||||
inputs_embeds,
|
||||
tokenizer,
|
||||
**kwargs
|
||||
):
|
||||
streamer = kwargs.get('streamer', None)
|
||||
if streamer is not None:
|
||||
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
||||
generation_kwargs = {
|
||||
'inputs_embeds': inputs_embeds,
|
||||
'pad_token_id': 0,
|
||||
'eos_token_id': terminators,
|
||||
}
|
||||
generation_kwargs.update(kwargs)
|
||||
|
||||
thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
|
||||
thread.start()
|
||||
|
||||
return streamer
|
||||
else:
|
||||
return origin_decode_stream(
|
||||
self=self,
|
||||
inputs_embeds=inputs_embeds,
|
||||
tokenizer=tokenizer,
|
||||
**kwargs
|
||||
)
|
||||
return minicpv_decode_stream
|
||||
|
||||
|
||||
# MiniCPM-V-2
|
||||
# modified from timm.models.vision_transformer.Attention.forward
|
||||
def vision_transformer_attention_forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
|
|
@ -209,6 +248,12 @@ def minicpmv_generate_wrapper(origin_generate):
|
|||
**kwargs
|
||||
):
|
||||
RepetitionPenaltyLogitsProcessor.__call__ = patched_repetition_penalty_call
|
||||
|
||||
# for minicpm-v-2_6 benchmarking purposes
|
||||
stream = kwargs.get("stream", False)
|
||||
if isinstance(stream, TextIteratorStreamer):
|
||||
kwargs.update({'streamer': stream})
|
||||
|
||||
return origin_generate(
|
||||
*inputs,
|
||||
**kwargs,
|
||||
|
|
|
|||
Loading…
Reference in a new issue