Fix baichuan-13b issue on portable zip under transformers 4.36 (#10746)

* fix baichuan-13b issue

* update

* update
This commit is contained in:
Jiao Wang 2024-04-12 16:27:01 -07:00 committed by GitHub
parent 9e668a5bf0
commit a9a6b6b7af
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 63 additions and 5 deletions

View file

@ -11,12 +11,17 @@ This portable zip includes everything you need to run an LLM with IPEX-LLM optim
</p>
### Verified Models
- Llama-2-7b-chat-hf
- Yi-6B-Chat
- Mixtral-8x7B-Instruct-v0.1
- Mistral-7B-Instruct-v0
- ChatGLM2-6b
- ChatGLM3-6b
- Baichuan-13B-Chat
- Baichuan2-7B-Chat
- internlm-chat-7b
- Llama-2-7b-chat-hf
- internlm2-chat-7b
- Qwen-7B-Chat
## How to use

View file

@ -252,6 +252,51 @@ def yi_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
)
def format_prompt_with_history(input_str,
chat_history):
SYSTEM_PROMPT = "A chat between a curious human <human> and an artificial intelligence assistant <bot>.\
The assistant gives helpful, detailed, and polite answers to the human's questions."
prompt = [f"{SYSTEM_PROMPT}\n"]
# prompt = []
for history_input_str, history_output_str in chat_history:
prompt.append(f"{HUMAN_ID} {history_input_str}\n{BOT_ID} {history_output_str}\n")
prompt.append(f"{HUMAN_ID} {input_str}\n{BOT_ID} ")
return "".join(prompt)
def stream_chat_with_history(model, tokenizer):
stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)])
chat_history = []
while True:
with torch.inference_mode():
user_input = input(Fore.GREEN + "\nHuman: " + Fore.RESET)
if user_input == "stop": # let's stop the conversation when user input "stop"
break
prompt = format_prompt_with_history(user_input, chat_history)
# print(prompt)
input_ids = tokenizer([prompt], return_tensors="pt")
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(input_ids, streamer=streamer, max_new_tokens=512,
stopping_criteria=stopping_criteria)
from threading import Thread
# to ensure non-blocking access to the generated text, generation process should be ran in a separate thread
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
output_str = []
print(Fore.BLUE + "IPEX-LLM: " + Fore.RESET, end="")
for partial_output_str in streamer:
output_str.append(partial_output_str)
# remove the last HUMAN_ID if exists
print(partial_output_str.replace(f"{HUMAN_ID}", ""), end="")
chat_history.append((user_input, "".join(output_str).replace(f"{HUMAN_ID}", "").rstrip()))
def auto_select_model(model_name):
try:
try:
@ -276,10 +321,12 @@ if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, help="path to an llm")
parser.add_argument("--start-size", type=int, default=4, help="start_size of kv_cahce")
parser.add_argument("--recent-size", type=int, default=2000)
args = parser.parse_args()
model_path = args.model_path
start_size = args.start_size
recent_size = args.recent_size
model = auto_select_model(model_path)
model = optimize_model(model)
@ -288,19 +335,25 @@ if __name__ == "__main__":
if model.config.architectures is not None and model.config.architectures[0] == "QWenLMHeadModel":
stop_words = get_stop_words_ids("Qwen", tokenizer=tokenizer)
kv_cache = StartRecentKVCache(start_size=start_size, k_seq_dim=1, v_seq_dim=1)
kv_cache = StartRecentKVCache(start_size=start_size,
k_seq_dim=1,
v_seq_dim=1,
recent_size=recent_size)
qwen_stream_chat(model=model, tokenizer=tokenizer,kv_cache=kv_cache, stop_words=stop_words)
elif model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel":
chatglm3_stream_chat(model=model, tokenizer=tokenizer)
elif model.config.architectures is not None and model.config.architectures[0] == "LlamaForCausalLM":
kv_cache = StartRecentKVCache(start_size=start_size)
kv_cache = StartRecentKVCache(start_size=start_size, recent_size=recent_size)
if "yi" in model_path.lower():
stop_words = get_stop_words_ids("Yi", tokenizer=tokenizer)
yi_stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache, stop_words=stop_words)
else:
llama_stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache)
elif model.config.architectures[0] == "BaichuanForCausalLM" and model.config.vocab_size == 64000:
# Baichuan-13B-Chat
stream_chat_with_history(model=model, tokenizer=tokenizer)
else:
kv_cache = StartRecentKVCache(start_size=start_size)
kv_cache = StartRecentKVCache(start_size=start_size, recent_size=recent_size)
stream_chat(model=model,
tokenizer=tokenizer,
kv_cache=kv_cache)