Fix baichuan-13b issue on portable zip under transformers 4.36 (#10746)
* fix baichuan-13b issue * update * update
This commit is contained in:
parent
9e668a5bf0
commit
a9a6b6b7af
2 changed files with 63 additions and 5 deletions
|
|
@ -11,12 +11,17 @@ This portable zip includes everything you need to run an LLM with IPEX-LLM optim
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
### Verified Models
|
### Verified Models
|
||||||
|
- Llama-2-7b-chat-hf
|
||||||
|
- Yi-6B-Chat
|
||||||
|
- Mixtral-8x7B-Instruct-v0.1
|
||||||
|
- Mistral-7B-Instruct-v0
|
||||||
- ChatGLM2-6b
|
- ChatGLM2-6b
|
||||||
|
- ChatGLM3-6b
|
||||||
- Baichuan-13B-Chat
|
- Baichuan-13B-Chat
|
||||||
- Baichuan2-7B-Chat
|
- Baichuan2-7B-Chat
|
||||||
- internlm-chat-7b
|
- internlm-chat-7b
|
||||||
- Llama-2-7b-chat-hf
|
- internlm2-chat-7b
|
||||||
|
- Qwen-7B-Chat
|
||||||
|
|
||||||
## How to use
|
## How to use
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -252,6 +252,51 @@ def yi_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=
|
||||||
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
|
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def format_prompt_with_history(input_str,
|
||||||
|
chat_history):
|
||||||
|
SYSTEM_PROMPT = "A chat between a curious human <human> and an artificial intelligence assistant <bot>.\
|
||||||
|
The assistant gives helpful, detailed, and polite answers to the human's questions."
|
||||||
|
prompt = [f"{SYSTEM_PROMPT}\n"]
|
||||||
|
# prompt = []
|
||||||
|
for history_input_str, history_output_str in chat_history:
|
||||||
|
prompt.append(f"{HUMAN_ID} {history_input_str}\n{BOT_ID} {history_output_str}\n")
|
||||||
|
prompt.append(f"{HUMAN_ID} {input_str}\n{BOT_ID} ")
|
||||||
|
|
||||||
|
return "".join(prompt)
|
||||||
|
|
||||||
|
|
||||||
|
def stream_chat_with_history(model, tokenizer):
|
||||||
|
stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)])
|
||||||
|
|
||||||
|
chat_history = []
|
||||||
|
|
||||||
|
while True:
|
||||||
|
with torch.inference_mode():
|
||||||
|
user_input = input(Fore.GREEN + "\nHuman: " + Fore.RESET)
|
||||||
|
if user_input == "stop": # let's stop the conversation when user input "stop"
|
||||||
|
break
|
||||||
|
prompt = format_prompt_with_history(user_input, chat_history)
|
||||||
|
# print(prompt)
|
||||||
|
input_ids = tokenizer([prompt], return_tensors="pt")
|
||||||
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||||||
|
generate_kwargs = dict(input_ids, streamer=streamer, max_new_tokens=512,
|
||||||
|
stopping_criteria=stopping_criteria)
|
||||||
|
|
||||||
|
from threading import Thread
|
||||||
|
# to ensure non-blocking access to the generated text, generation process should be ran in a separate thread
|
||||||
|
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
||||||
|
thread.start()
|
||||||
|
|
||||||
|
output_str = []
|
||||||
|
print(Fore.BLUE + "IPEX-LLM: " + Fore.RESET, end="")
|
||||||
|
for partial_output_str in streamer:
|
||||||
|
output_str.append(partial_output_str)
|
||||||
|
# remove the last HUMAN_ID if exists
|
||||||
|
print(partial_output_str.replace(f"{HUMAN_ID}", ""), end="")
|
||||||
|
|
||||||
|
chat_history.append((user_input, "".join(output_str).replace(f"{HUMAN_ID}", "").rstrip()))
|
||||||
|
|
||||||
def auto_select_model(model_name):
|
def auto_select_model(model_name):
|
||||||
try:
|
try:
|
||||||
try:
|
try:
|
||||||
|
|
@ -276,10 +321,12 @@ if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument("--model-path", type=str, help="path to an llm")
|
parser.add_argument("--model-path", type=str, help="path to an llm")
|
||||||
parser.add_argument("--start-size", type=int, default=4, help="start_size of kv_cahce")
|
parser.add_argument("--start-size", type=int, default=4, help="start_size of kv_cahce")
|
||||||
|
parser.add_argument("--recent-size", type=int, default=2000)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
model_path = args.model_path
|
model_path = args.model_path
|
||||||
start_size = args.start_size
|
start_size = args.start_size
|
||||||
|
recent_size = args.recent_size
|
||||||
|
|
||||||
model = auto_select_model(model_path)
|
model = auto_select_model(model_path)
|
||||||
model = optimize_model(model)
|
model = optimize_model(model)
|
||||||
|
|
@ -288,19 +335,25 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
if model.config.architectures is not None and model.config.architectures[0] == "QWenLMHeadModel":
|
if model.config.architectures is not None and model.config.architectures[0] == "QWenLMHeadModel":
|
||||||
stop_words = get_stop_words_ids("Qwen", tokenizer=tokenizer)
|
stop_words = get_stop_words_ids("Qwen", tokenizer=tokenizer)
|
||||||
kv_cache = StartRecentKVCache(start_size=start_size, k_seq_dim=1, v_seq_dim=1)
|
kv_cache = StartRecentKVCache(start_size=start_size,
|
||||||
|
k_seq_dim=1,
|
||||||
|
v_seq_dim=1,
|
||||||
|
recent_size=recent_size)
|
||||||
qwen_stream_chat(model=model, tokenizer=tokenizer,kv_cache=kv_cache, stop_words=stop_words)
|
qwen_stream_chat(model=model, tokenizer=tokenizer,kv_cache=kv_cache, stop_words=stop_words)
|
||||||
elif model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel":
|
elif model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel":
|
||||||
chatglm3_stream_chat(model=model, tokenizer=tokenizer)
|
chatglm3_stream_chat(model=model, tokenizer=tokenizer)
|
||||||
elif model.config.architectures is not None and model.config.architectures[0] == "LlamaForCausalLM":
|
elif model.config.architectures is not None and model.config.architectures[0] == "LlamaForCausalLM":
|
||||||
kv_cache = StartRecentKVCache(start_size=start_size)
|
kv_cache = StartRecentKVCache(start_size=start_size, recent_size=recent_size)
|
||||||
if "yi" in model_path.lower():
|
if "yi" in model_path.lower():
|
||||||
stop_words = get_stop_words_ids("Yi", tokenizer=tokenizer)
|
stop_words = get_stop_words_ids("Yi", tokenizer=tokenizer)
|
||||||
yi_stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache, stop_words=stop_words)
|
yi_stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache, stop_words=stop_words)
|
||||||
else:
|
else:
|
||||||
llama_stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache)
|
llama_stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache)
|
||||||
|
elif model.config.architectures[0] == "BaichuanForCausalLM" and model.config.vocab_size == 64000:
|
||||||
|
# Baichuan-13B-Chat
|
||||||
|
stream_chat_with_history(model=model, tokenizer=tokenizer)
|
||||||
else:
|
else:
|
||||||
kv_cache = StartRecentKVCache(start_size=start_size)
|
kv_cache = StartRecentKVCache(start_size=start_size, recent_size=recent_size)
|
||||||
stream_chat(model=model,
|
stream_chat(model=model,
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
kv_cache=kv_cache)
|
kv_cache=kv_cache)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue