add ppl benchmark (#9914)
* add ppl benchmark * add license * add readme * add dataset argument * add dataset usage * fixed low bit args * correct result * fix terminal display * fix ppl update * enable fp16 fp32 bf16 * format the desc * fix model_kwargs * add more readme
This commit is contained in:
		
							parent
							
								
									100e0a87e5
								
							
						
					
					
						commit
						a8c866c32b
					
				
					 3 changed files with 153 additions and 0 deletions
				
			
		
							
								
								
									
										11
									
								
								python/llm/dev/benchmark/perplexity/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										11
									
								
								python/llm/dev/benchmark/perplexity/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,11 @@
 | 
			
		|||
# Perplexity
 | 
			
		||||
Perplexity (PPL) is one of the most common metrics for evaluating language models. This benchmark implementation was from [transformers/perplexity](https://huggingface.co/docs/transformers/perplexity#perplexity-of-fixed-length-models) and [llm_perplexity.py](https://github.com/luo-cheng2021/ov.cpu.llm.experimental/blob/main/llm_perplexity.py) 
 | 
			
		||||
 | 
			
		||||
## HOW TO RUN
 | 
			
		||||
```python
 | 
			
		||||
python run.py --model_path <path/to/model> --low_bit sym_int4 fp4 mixed_fp4 sym_int8 fp8_e5m2 fp8_e4m3 mixed_fp8 --device xpu --dataset path=<dataset_path>,name=<dataset_name>
 | 
			
		||||
```
 | 
			
		||||
A more specific example to run perplexity on Llama2-7B and wikitext:
 | 
			
		||||
```python
 | 
			
		||||
python run.py --model_path meta-llama/Llama-2-7b-chat-hf --low_bit float16 sym_int4 --device xpu --dataset path=wikitext,name=wikitext-2-raw-v1
 | 
			
		||||
```
 | 
			
		||||
							
								
								
									
										84
									
								
								python/llm/dev/benchmark/perplexity/ppl.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										84
									
								
								python/llm/dev/benchmark/perplexity/ppl.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,84 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import intel_extension_for_pytorch as ipex
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
from tqdm import tqdm
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
			
		||||
 | 
			
		||||
class PPL:
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        self.nll = 0
 | 
			
		||||
        self.cnt = 0
 | 
			
		||||
    def __call__(self, all_logits, labels):
 | 
			
		||||
        '''
 | 
			
		||||
            all_logits [seq_length, vocab_size]
 | 
			
		||||
            labels [seq_length]
 | 
			
		||||
        '''
 | 
			
		||||
        seq_length = all_logits.shape[0]
 | 
			
		||||
        for i in range(0, seq_length - 1):
 | 
			
		||||
            logits = all_logits[i, :]
 | 
			
		||||
            max_logit = np.amax(logits)
 | 
			
		||||
            sum_exp = np.sum(np.exp(logits - max_logit))
 | 
			
		||||
            # logits at time-step i is for predicting token at time-step (i+1)
 | 
			
		||||
            next_tok = labels[i + 1]
 | 
			
		||||
            log_softmax_of_tok = (logits[next_tok] - max_logit) - np.log(sum_exp)
 | 
			
		||||
            self.nll += -log_softmax_of_tok
 | 
			
		||||
            self.cnt += 1
 | 
			
		||||
        return np.exp(self.nll / self.cnt)
 | 
			
		||||
   
 | 
			
		||||
    def result(self):
 | 
			
		||||
        return np.exp(self.nll / self.cnt)
 | 
			
		||||
 | 
			
		||||
    def __str__(self):
 | 
			
		||||
        return f"PPL: {np.exp(self.nll / self.cnt):.3f}"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class BigDLPPL:
 | 
			
		||||
    def __init__(self, model_path, device, **model_kwargs) -> None:
 | 
			
		||||
        model_kwargs['trust_remote_code'] = model_kwargs.get('trust_remote_code', True)
 | 
			
		||||
        model_kwargs['optimize_model'] = model_kwargs.get('optimize_model', True)
 | 
			
		||||
        self.device = device
 | 
			
		||||
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        self.model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
 | 
			
		||||
        if 'xpu' in device:
 | 
			
		||||
            import intel_extension_for_pytorch as ipex
 | 
			
		||||
        self.model.to(device)
 | 
			
		||||
        self.ppl_evaluator = PPL()
 | 
			
		||||
 | 
			
		||||
    def perplexity_hf(self, text):
 | 
			
		||||
        inputs = self.tokenizer('\n\n'.join(text), return_tensors='pt').to(self.device)
 | 
			
		||||
        input_ids = inputs['input_ids']
 | 
			
		||||
        #    attention_mask = inputs['attention_mask']
 | 
			
		||||
        progress_bar = tqdm(range(0, input_ids.shape[1], 512))
 | 
			
		||||
        
 | 
			
		||||
        for i0 in progress_bar:
 | 
			
		||||
            input_ids_chunks = input_ids[:, i0:(i0+512)]
 | 
			
		||||
            input_ids_chunks[:, 0] = 1
 | 
			
		||||
            with torch.no_grad():
 | 
			
		||||
                result = self.model.forward(input_ids_chunks, labels = input_ids_chunks, return_dict=True)
 | 
			
		||||
                #print(f"ppl = {torch.exp(result.loss)}")
 | 
			
		||||
                seq_len = result.logits.shape[1]
 | 
			
		||||
                data = result.logits
 | 
			
		||||
                data = data.to('cpu')
 | 
			
		||||
                input_ids_chunks = input_ids_chunks.to('cpu')
 | 
			
		||||
                self.ppl_evaluator(data.numpy()[0, seq_len//2:, :], input_ids_chunks.numpy()[0, seq_len//2:])
 | 
			
		||||
            progress_bar.set_description(f"{self.ppl_evaluator}")
 | 
			
		||||
 | 
			
		||||
        return self.ppl_evaluator.result()
 | 
			
		||||
							
								
								
									
										58
									
								
								python/llm/dev/benchmark/perplexity/run.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										58
									
								
								python/llm/dev/benchmark/perplexity/run.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,58 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
 | 
			
		||||
from ppl import BigDLPPL
 | 
			
		||||
from datasets import load_dataset
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def parse_kwargs(kwstr):
 | 
			
		||||
    kvpair = [item.split('=') for item in kwstr.split(',') if item != ""]
 | 
			
		||||
    return {k:v for k, v in kvpair}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def parse_args():
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser.add_argument("--model_path", required=True, type=str)
 | 
			
		||||
    parser.add_argument("--precisions", required=False, type=str, default=None, nargs='+')
 | 
			
		||||
    parser.add_argument("--model_kwargs", required=False, type=str, default="")
 | 
			
		||||
    parser.add_argument("--torch_dtype", type=str, default=None)
 | 
			
		||||
    parser.add_argument("--device", type=str, default=None)
 | 
			
		||||
    parser.add_argument("--dataset", type=str, default='path=wikitext,name=wikitext-2-raw-v1')
 | 
			
		||||
 | 
			
		||||
    return parser.parse_args()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
    args = parse_args()
 | 
			
		||||
    text = load_dataset(**parse_kwargs(args.dataset), split="test")["text"]
 | 
			
		||||
    additional_model_kwargs = parse_kwargs(args.model_kwargs)
 | 
			
		||||
    summary = {}
 | 
			
		||||
    for precision in args.precisions:
 | 
			
		||||
        model_kwargs = additional_model_kwargs
 | 
			
		||||
        if precision in ggml_tensor_qtype.keys():
 | 
			
		||||
            model_kwargs['load_in_low_bit'] = precision
 | 
			
		||||
        else:
 | 
			
		||||
            model_kwargs['torch_dtype'] = getattr(torch, precision)
 | 
			
		||||
        print(model_kwargs)
 | 
			
		||||
        ppl_evaluator = BigDLPPL(model_path=args.model_path, device=args.device, **model_kwargs)
 | 
			
		||||
        ppl = ppl_evaluator.perplexity_hf(text)
 | 
			
		||||
        summary[precision] = ppl
 | 
			
		||||
    print(summary)
 | 
			
		||||
 | 
			
		||||
main()
 | 
			
		||||
		Loading…
	
		Reference in a new issue