add ppl benchmark (#9914)
* add ppl benchmark * add license * add readme * add dataset argument * add dataset usage * fixed low bit args * correct result * fix terminal display * fix ppl update * enable fp16 fp32 bf16 * format the desc * fix model_kwargs * add more readme
This commit is contained in:
parent
100e0a87e5
commit
a8c866c32b
3 changed files with 153 additions and 0 deletions
11
python/llm/dev/benchmark/perplexity/README.md
Normal file
11
python/llm/dev/benchmark/perplexity/README.md
Normal file
|
|
@ -0,0 +1,11 @@
|
|||
# Perplexity
|
||||
Perplexity (PPL) is one of the most common metrics for evaluating language models. This benchmark implementation was from [transformers/perplexity](https://huggingface.co/docs/transformers/perplexity#perplexity-of-fixed-length-models) and [llm_perplexity.py](https://github.com/luo-cheng2021/ov.cpu.llm.experimental/blob/main/llm_perplexity.py)
|
||||
|
||||
## HOW TO RUN
|
||||
```python
|
||||
python run.py --model_path <path/to/model> --low_bit sym_int4 fp4 mixed_fp4 sym_int8 fp8_e5m2 fp8_e4m3 mixed_fp8 --device xpu --dataset path=<dataset_path>,name=<dataset_name>
|
||||
```
|
||||
A more specific example to run perplexity on Llama2-7B and wikitext:
|
||||
```python
|
||||
python run.py --model_path meta-llama/Llama-2-7b-chat-hf --low_bit float16 sym_int4 --device xpu --dataset path=wikitext,name=wikitext-2-raw-v1
|
||||
```
|
||||
84
python/llm/dev/benchmark/perplexity/ppl.py
Normal file
84
python/llm/dev/benchmark/perplexity/ppl.py
Normal file
|
|
@ -0,0 +1,84 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
|
||||
class PPL:
|
||||
def __init__(self):
|
||||
self.nll = 0
|
||||
self.cnt = 0
|
||||
def __call__(self, all_logits, labels):
|
||||
'''
|
||||
all_logits [seq_length, vocab_size]
|
||||
labels [seq_length]
|
||||
'''
|
||||
seq_length = all_logits.shape[0]
|
||||
for i in range(0, seq_length - 1):
|
||||
logits = all_logits[i, :]
|
||||
max_logit = np.amax(logits)
|
||||
sum_exp = np.sum(np.exp(logits - max_logit))
|
||||
# logits at time-step i is for predicting token at time-step (i+1)
|
||||
next_tok = labels[i + 1]
|
||||
log_softmax_of_tok = (logits[next_tok] - max_logit) - np.log(sum_exp)
|
||||
self.nll += -log_softmax_of_tok
|
||||
self.cnt += 1
|
||||
return np.exp(self.nll / self.cnt)
|
||||
|
||||
def result(self):
|
||||
return np.exp(self.nll / self.cnt)
|
||||
|
||||
def __str__(self):
|
||||
return f"PPL: {np.exp(self.nll / self.cnt):.3f}"
|
||||
|
||||
|
||||
class BigDLPPL:
|
||||
def __init__(self, model_path, device, **model_kwargs) -> None:
|
||||
model_kwargs['trust_remote_code'] = model_kwargs.get('trust_remote_code', True)
|
||||
model_kwargs['optimize_model'] = model_kwargs.get('optimize_model', True)
|
||||
self.device = device
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
|
||||
if 'xpu' in device:
|
||||
import intel_extension_for_pytorch as ipex
|
||||
self.model.to(device)
|
||||
self.ppl_evaluator = PPL()
|
||||
|
||||
def perplexity_hf(self, text):
|
||||
inputs = self.tokenizer('\n\n'.join(text), return_tensors='pt').to(self.device)
|
||||
input_ids = inputs['input_ids']
|
||||
# attention_mask = inputs['attention_mask']
|
||||
progress_bar = tqdm(range(0, input_ids.shape[1], 512))
|
||||
|
||||
for i0 in progress_bar:
|
||||
input_ids_chunks = input_ids[:, i0:(i0+512)]
|
||||
input_ids_chunks[:, 0] = 1
|
||||
with torch.no_grad():
|
||||
result = self.model.forward(input_ids_chunks, labels = input_ids_chunks, return_dict=True)
|
||||
#print(f"ppl = {torch.exp(result.loss)}")
|
||||
seq_len = result.logits.shape[1]
|
||||
data = result.logits
|
||||
data = data.to('cpu')
|
||||
input_ids_chunks = input_ids_chunks.to('cpu')
|
||||
self.ppl_evaluator(data.numpy()[0, seq_len//2:, :], input_ids_chunks.numpy()[0, seq_len//2:])
|
||||
progress_bar.set_description(f"{self.ppl_evaluator}")
|
||||
|
||||
return self.ppl_evaluator.result()
|
||||
58
python/llm/dev/benchmark/perplexity/run.py
Normal file
58
python/llm/dev/benchmark/perplexity/run.py
Normal file
|
|
@ -0,0 +1,58 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
||||
from ppl import BigDLPPL
|
||||
from datasets import load_dataset
|
||||
import argparse
|
||||
|
||||
|
||||
def parse_kwargs(kwstr):
|
||||
kvpair = [item.split('=') for item in kwstr.split(',') if item != ""]
|
||||
return {k:v for k, v in kvpair}
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model_path", required=True, type=str)
|
||||
parser.add_argument("--precisions", required=False, type=str, default=None, nargs='+')
|
||||
parser.add_argument("--model_kwargs", required=False, type=str, default="")
|
||||
parser.add_argument("--torch_dtype", type=str, default=None)
|
||||
parser.add_argument("--device", type=str, default=None)
|
||||
parser.add_argument("--dataset", type=str, default='path=wikitext,name=wikitext-2-raw-v1')
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
text = load_dataset(**parse_kwargs(args.dataset), split="test")["text"]
|
||||
additional_model_kwargs = parse_kwargs(args.model_kwargs)
|
||||
summary = {}
|
||||
for precision in args.precisions:
|
||||
model_kwargs = additional_model_kwargs
|
||||
if precision in ggml_tensor_qtype.keys():
|
||||
model_kwargs['load_in_low_bit'] = precision
|
||||
else:
|
||||
model_kwargs['torch_dtype'] = getattr(torch, precision)
|
||||
print(model_kwargs)
|
||||
ppl_evaluator = BigDLPPL(model_path=args.model_path, device=args.device, **model_kwargs)
|
||||
ppl = ppl_evaluator.perplexity_hf(text)
|
||||
summary[precision] = ppl
|
||||
print(summary)
|
||||
|
||||
main()
|
||||
Loading…
Reference in a new issue