[NPU] Add example for NPU multi-processing minicpm-1b model (#11935)
* add minicpm example
This commit is contained in:
parent
7c8c9a0670
commit
a81a329a5f
2 changed files with 98 additions and 0 deletions
|
|
@ -81,6 +81,7 @@ The example below shows how to run the **_optimized model implementations_** on
|
|||
- [Llama2-7B](./llama.py)
|
||||
- [Llama3-8B](./llama.py)
|
||||
- [Qwen2-1.5B](./qwen2.py)
|
||||
- [MiniCPM-1B](./minicpm.py)
|
||||
|
||||
```bash
|
||||
# to run Llama-2-7b-chat-hf
|
||||
|
|
@ -91,6 +92,9 @@ python llama.py --repo-id-or-model-path meta-llama/Meta-Llama-3-8B-Instruct
|
|||
|
||||
# to run Qwen2-1.5B-Instruct
|
||||
python qwen2.py
|
||||
|
||||
# to run MiniCPM-1B-sft-bf16
|
||||
python minicpm.py
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
|
|
@ -113,6 +117,9 @@ python llama.py --repo-id-or-model-path meta-llama/Meta-Llama-3-8B-Instruct --d
|
|||
|
||||
# to run Qwen2-1.5B-Instruct
|
||||
python qwen2.py --disable-transpose-value-cache
|
||||
|
||||
# to run MiniCPM-1B-sft-bf16
|
||||
python minicpm.py --disable-transpose-value-cache
|
||||
```
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,91 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import os
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Predict Tokens using `generate()` API for npu model"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repo-id-or-model-path",
|
||||
type=str,
|
||||
default="openbmb/MiniCPM-1B-sft-bf16",
|
||||
help="The huggingface repo id for the Llama2 model to be downloaded"
|
||||
", or the path to the huggingface checkpoint folder",
|
||||
)
|
||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
|
||||
parser.add_argument("--max-output-len", type=int, default=1024)
|
||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||
parser.add_argument("--intra-pp", type=int, default=2)
|
||||
parser.add_argument("--inter-pp", type=int, default=2)
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=torch.float16,
|
||||
trust_remote_code=True,
|
||||
attn_implementation="eager",
|
||||
load_in_low_bit="sym_int4",
|
||||
optimize_model=True,
|
||||
max_output_len=args.max_output_len,
|
||||
max_prompt_len=args.max_prompt_len,
|
||||
intra_pp=args.intra_pp,
|
||||
inter_pp=args.inter_pp,
|
||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
print("-" * 80)
|
||||
print("done")
|
||||
with torch.inference_mode():
|
||||
|
||||
print("finish to load")
|
||||
for i in range(5):
|
||||
_input_ids = tokenizer.encode("<用户>{}".format(args.prompt), return_tensors="pt")
|
||||
print("input length:", len(_input_ids[0]))
|
||||
st = time.time()
|
||||
output = model.generate(
|
||||
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
|
||||
)
|
||||
end = time.time()
|
||||
print(f"Inference time: {end-st} s")
|
||||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Input", "-" * 20)
|
||||
print(input_str)
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Output", "-" * 20)
|
||||
print(output_str)
|
||||
|
||||
print("-" * 80)
|
||||
print("done")
|
||||
print("success shut down")
|
||||
Loading…
Reference in a new issue