Update Databricks user guide (#5920)

* update databricks doc

* update databricks doc

* update databricks doc

* update databricks doc

* update databricks doc

* update databricks doc

Co-authored-by: Zhou <jian.zhou@intel.com>
This commit is contained in:
Jian Zhou 2022-09-28 09:47:18 +08:00 committed by GitHub
parent 0d696fcf92
commit a703ae4eba
14 changed files with 181 additions and 39 deletions

View file

@ -8,73 +8,89 @@ You can run BigDL program on the [Databricks](https://databricks.com/) cluster a
- Create either an [AWS Databricks](https://docs.databricks.com/getting-started/try-databricks.html) workspace or an [Azure Databricks](https://docs.microsoft.com/en-us/azure/azure-databricks/) workspace.
- Create a Databricks [cluster](https://docs.databricks.com/clusters/create.html) using the UI. Choose Databricks runtime version. This guide is tested on Runtime 9.1 LTS (includes Apache Spark 3.1.2, Scala 2.12).
### 2. Download BigDL Libraries
![](images/create-cluster.png)
Download the BigDL package from [here](https://oss.sonatype.org/content/repositories/snapshots/com/intel/analytics/bigdl/bigdl-assembly-spark_3.1.2/2.1.0-SNAPSHOT/), scroll down to the bottom, choose the **latest** release **bigdl-assembly-spark_3.1.2-2.1.0-*-fat-jars.zip**.
### 2. Generate initialization script
![](images/fat-jars.png)
[Init script](https://learn.microsoft.com/en-us/azure/databricks/clusters/init-scripts) is used to Install BigDL or other libraries. First, you need to put the **init script** into [DBFS](https://docs.databricks.com/dbfs/index.html), you can use one of the following ways.
Unzip the zip file, we only need two files:
**a. Generate init script in Databricks notebook**
- jars/**bigdl-assembly-spark_3.1.2-2.1.0-SNAPSHOT-jar-with-dependencies.jar**
- python/**bigdl-spark_3.1.2-2.1.0-SNAPSHOT-python-api.zip**
Create a Databricks notebook and execute
### 3. Install BigDL Java dependencies
```python
init_script = """
#!/bin/bash
In the Databricks left panel, click **Compute** and select your cluster.
# install bigdl-orca, add other bigdl modules if you need
/databricks/python/bin/pip install pip install --pre --upgrade bigdl-orca-spark3[ray]
![](images/compute.png)
# install other necessary libraries, here we install libraries needed in this tutorial
/databricks/python/bin/pip install tensorflow==2.9.1
/databricks/python/bin/pip install pyarrow==8.0.0
/databricks/python/bin/pip install psutil
Install BigDL java packages using **bigdl-assembly-spark_3.1.2-2.1.0-SNAPSHOT-jar-with-dependencies.jar** from [step 2](#2-download-bigdl-libraries). Click **Libraries > Install New > Library Source(Upload) > Library Type (Jar)**. Drop the jar on Databricks.
# copy bigdl jars to databricks
cp /databricks/python/lib/python3.8/site-packages/bigdl/share/*/lib/*.jar /databricks/jars
"""
![](images/assembly-jar.png)
# Change the first parameter to your DBFS path
dbutils.fs.put("dbfs:/FileStore/scripts/init.sh", init_script, True)
```
After upload finishes, click **Install**.
To make sure the init script is in DBFS, in the left panel, click **Data > DBFS > check your script save path**.
> Tips: if you find your upload process is really slow, try to use **Databricks CLI** to upload, see [Appendix B](#appendix-b) for details.
> if you do not see DBFS in your panel, see [Appendix A](#appendix-a).
### 4. Install BigDL Python libraries
**b. Create init script in local and upload to DBFS**
Install BigDL python environment using **bigdl-spark_3.1.2-2.1.0-SNAPSHOT-python-api.zip** from [step 2](#2-download-bigdl-libraries). However, Databricks can only upload **Jar**, **Python Egg** and **Python Whl**, but doesn't support **Zip**, so we can not simply upload the python api zip and install it like what we do in [step 3](#3-install-bigdl-java-dependencies). You can upload and install the zip package in one of the following ways.
Create a file **init.sh**(or any other filename) in your computer, the file content is
#### 4.1 Upload and Install through DBFS
```bash
#!/bin/bash
**First, upload the zip package to [DBFS](https://docs.databricks.com/dbfs/index.html).** In the left panel, click **Data > DBFS**, if your panel don't have DBFS, see [Appendix A](#appendix-a). then choose or create a folder and right click in the folder, choose **Upload here**.
# install bigdl-orca, add other bigdl modules if you need
/databricks/python/bin/pip install pip install --pre --upgrade bigdl-orca-spark3[ray]
![](images/upload.png)
# install other necessary libraries, here we install libraries needed in this tutorial
/databricks/python/bin/pip install tensorflow==2.9.1
/databricks/python/bin/pip install pyarrow==8.0.0
/databricks/python/bin/pip install psutil
Upload your zip package.
# copy bigdl jars to databricks
cp /databricks/python/lib/python3.8/site-packages/bigdl/share/*/lib/*.jar /databricks/jars
```
![](images/upload-success.png)
Then upload **init.sh** to DBFS. In Databricks left panel, click **Data > DBFS > Choose or create upload directory > Right click > Upload here**.
Right click the uploaded zip package and choose **Copy path**, copy the **Spark API Format** path.
![](images/upload-init-script.png)
![](images/copy-path.png)
Now the init script is in DBFS, right click the init.sh and choose **Copy path**, copy the **Spark API Format** path.
**Then install the zip package from DBFS.** In the left panel, click **Compute > choose your cluster > Libraries > Install new > Library Source(DBFS/ADLS) > Library Type(Python Egg) > paste the path > Install**
![](images/copy-script-path.png)
![](images/install-zip.png)
### 3. Set Spark configuration
#### 4.2 Change the File Extension Name
In the left panel, click **Compute > Choose your cluster > edit > Advanced options > Spark > Confirm**. You can provide custom [Spark configuration properties](https://spark.apache.org/docs/latest/configuration.html) in a cluster configuration. Please set it according to your cluster resource and program needs.
You can simply change the **bigdl-spark_3.1.2-2.1.0-SNAPSHOT-python-api.zip** extension name(**.zip**) to **.egg**, since Egg is essentially a zip format package. Then in the left panel, click **Compute > choose your cluster > Libraries > Install new > Library Source(Upload) > Library Type(Python Egg) > Install**
![](images/spark-config.png)
![](images/egg.png)
### **5. Set Spark configuration**
On the cluster configuration page, click the **Advanced Options** toggle. Click the **Spark** tab. You can provide custom [Spark configuration properties](https://spark.apache.org/docs/latest/configuration.html) in a cluster configuration. Please set it according to your cluster resource and program needs.
![](images/Databricks5.PNG)
See below for an example of Spark config setting needed by BigDL. Here it sets 2 core per executor. Note that "spark.cores.max" needs to be properly set below.
See below for an example of Spark config setting **needed** by BigDL. Here it sets 2 core per executor. Note that "spark.cores.max" needs to be properly set below.
```
spark.executor.cores 2
spark.cores.max 4
```
### **6. Run BigDL on Databricks**
### 4. Install BigDL Libraries
Use the init script from [step 2](#2-generate-initialization-script) to install BigDL libraries. In the left panel, click **Compute > Choose your cluster > edit > Advanced options > Init Scripts > Paste init script path > Add > Confirm**.
![](images/config-init-script.png)
Then start or restart the cluster. After starting/restarting the cluster, the libraries specified in the init script are all installed.
### **5. Run BigDL on Databricks**
Open a new notebook, and call `init_orca_context` at the beginning of your code (with `cluster_mode` set to "spark-submit").
@ -87,10 +103,136 @@ Output on Databricks:
![](images/init-orca-context.png)
**Run ncf_train example on Databricks**
### **7. Install other third-party libraries on Databricks if necessary**
Create a notebook and run the following example. Note that to make things simple, we are just generating some dummy data for this example.
If you want to use other third-party libraries, check related Databricks documentation of [libraries for AWS Databricks](https://docs.databricks.com/libraries/index.html) and [libraries for Azure Databricks](https://docs.microsoft.com/en-us/azure/databricks/libraries/).
```python
import math
import argparse
import os
import random
from bigdl.orca import init_orca_context, stop_orca_context, OrcaContext
from bigdl.orca.learn.tf2.estimator import Estimator
from pyspark.sql.types import StructType, StructField, IntegerType
def build_model(num_users, num_items, class_num, layers=[20, 10], include_mf=True, mf_embed=20):
import tensorflow as tf
from tensorflow.keras.layers import Input, Embedding, Dense, Flatten, concatenate, multiply
num_layer = len(layers)
user_input = Input(shape=(1,), dtype='int32', name='user_input')
item_input = Input(shape=(1,), dtype='int32', name='item_input')
mlp_embed_user = Embedding(input_dim=num_users, output_dim=int(layers[0] / 2),
input_length=1)(user_input)
mlp_embed_item = Embedding(input_dim=num_items, output_dim=int(layers[0] / 2),
input_length=1)(item_input)
user_latent = Flatten()(mlp_embed_user)
item_latent = Flatten()(mlp_embed_item)
mlp_latent = concatenate([user_latent, item_latent], axis=1)
for idx in range(1, num_layer):
layer = Dense(layers[idx], activation='relu',
name='layer%d' % idx)
mlp_latent = layer(mlp_latent)
if include_mf:
mf_embed_user = Embedding(input_dim=num_users,
output_dim=mf_embed,
input_length=1)(user_input)
mf_embed_item = Embedding(input_dim=num_users,
output_dim=mf_embed,
input_length=1)(item_input)
mf_user_flatten = Flatten()(mf_embed_user)
mf_item_flatten = Flatten()(mf_embed_item)
mf_latent = multiply([mf_user_flatten, mf_item_flatten])
concated_model = concatenate([mlp_latent, mf_latent], axis=1)
prediction = Dense(class_num, activation='softmax', name='prediction')(concated_model)
else:
prediction = Dense(class_num, activation='softmax', name='prediction')(mlp_latent)
model = tf.keras.Model([user_input, item_input], prediction)
return model
if __name__ == '__main__':
executor_cores = 2
lr = 0.001
epochs = 5
batch_size = 8000
model_dir = "/dbfs/FileStore/model/ncf/"
backend = "ray" # ray or spark
data_dir = './'
save_path = model_dir + "ncf.h5"
sc = init_orca_context(cluster_mode="spark-submit")
spark = OrcaContext.get_spark_session()
num_users, num_items = 6000, 3000
rdd = sc.range(0, 50000).map(
lambda x: [random.randint(0, num_users - 1), random.randint(0, num_items - 1), random.randint(0, 4)])
schema = StructType([StructField("user", IntegerType(), False),
StructField("item", IntegerType(), False),
StructField("label", IntegerType(), False)])
data = spark.createDataFrame(rdd, schema)
train, test = data.randomSplit([0.8, 0.2], seed=1)
config = {"lr": lr, "inter_op_parallelism": 4, "intra_op_parallelism": executor_cores}
def model_creator(config):
import tensorflow as tf
model = build_model(num_users, num_items, 5)
print(model.summary())
optimizer = tf.keras.optimizers.Adam(config["lr"])
model.compile(optimizer=optimizer,
loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_crossentropy', 'accuracy'])
return model
steps_per_epoch = math.ceil(train.count() / batch_size)
val_steps = math.ceil(test.count() / batch_size)
estimator = Estimator.from_keras(model_creator=model_creator,
verbose=False,
config=config,
backend=backend,
model_dir=model_dir)
estimator.fit(train,
batch_size=batch_size,
epochs=epochs,
feature_cols=['user', 'item'],
label_cols=['label'],
steps_per_epoch=steps_per_epoch,
validation_data=test,
validation_steps=val_steps)
predictions = estimator.predict(test,
batch_size=batch_size,
feature_cols=['user', 'item'],
steps=val_steps)
print("Predictions on validation dataset:")
predictions.show(5, truncate=False)
print("Saving model to: ", save_path)
estimator.save(save_path)
# load with estimator.load(save_path)
stop_orca_context()
```
### **6. Other ways to install third-party libraries on Databricks if necessary**
If you want to use other ways to install third-party libraries, check related Databricks documentation of [libraries for AWS Databricks](https://docs.databricks.com/libraries/index.html) and [libraries for Azure Databricks](https://docs.microsoft.com/en-us/azure/databricks/libraries/).
### Appendix A
@ -100,7 +242,7 @@ If there is no DBFS in your panel, go to **User profile > Admin Console > Works
### Appendix B
Use **Databricks CLI** to upload file to DBFS.
Use **Databricks CLI** to upload file to DBFS. When you upload a large file to DBFS, using Databricks CLI could be faster than using the Databricks web UI.
**Install and config Azure Databricks CLI**

Binary file not shown.

Before

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB