use new fused layer norm (#12553)
This commit is contained in:
		
							parent
							
								
									680ea7e4a8
								
							
						
					
					
						commit
						a608f26cc8
					
				
					 4 changed files with 38 additions and 41 deletions
				
			
		| 
						 | 
				
			
			@ -1296,10 +1296,9 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
    trans_version = transformers.__version__
 | 
			
		||||
 | 
			
		||||
    # convert all nn.LayerNorm
 | 
			
		||||
    from ipex_llm.transformers.models.bloom import bloom_layer_norm_forward
 | 
			
		||||
    convert_forward(model,
 | 
			
		||||
                    nn.LayerNorm,
 | 
			
		||||
                    bloom_layer_norm_forward)
 | 
			
		||||
    from ipex_llm.transformers.models.common import layer_norm_forward
 | 
			
		||||
    convert_forward(model, nn.LayerNorm, layer_norm_forward)
 | 
			
		||||
 | 
			
		||||
    from ipex_llm.transformers.models.llama import llama_rms_norm_forward
 | 
			
		||||
    from ipex_llm.transformers.models.llama import llama_mlp_forward
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -64,23 +64,6 @@ def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training:
 | 
			
		|||
    return out
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def bloom_layer_norm_forward(self, hidden_states):
 | 
			
		||||
    if use_fused_layer_norm(hidden_states, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        result = xe_addons.fused_layer_norm(hidden_states,
 | 
			
		||||
                                            [self.weight.size(0)],
 | 
			
		||||
                                            self.weight,
 | 
			
		||||
                                            self.bias,
 | 
			
		||||
                                            self.eps)
 | 
			
		||||
        # if nelement == 0, means fused norm failed, go back to python implement.
 | 
			
		||||
        if result.nelement != 0:
 | 
			
		||||
            return result
 | 
			
		||||
    input_dtype = hidden_states.dtype
 | 
			
		||||
    result = F.layer_norm(hidden_states.to(self.weight.dtype),
 | 
			
		||||
                          self.normalized_shape, self.weight, self.bias, self.eps)
 | 
			
		||||
    return result.to(input_dtype)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def bloom_attention_forward(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: torch.Tensor,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -14,6 +14,7 @@
 | 
			
		|||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
import torch
 | 
			
		||||
from typing import List
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -159,7 +160,7 @@ def rms_norm_forward(self, hidden_states: torch.Tensor):
 | 
			
		|||
    else:
 | 
			
		||||
        eps = self.epsilon
 | 
			
		||||
 | 
			
		||||
    if hidden_states.device.type == 'xpu':
 | 
			
		||||
    if hidden_states.device.type == 'xpu' and hidden_states.dtype in [torch.float, torch.half]:
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
			
		||||
        output = xe_addons.rms_norm(weight, x_2d, eps)
 | 
			
		||||
| 
						 | 
				
			
			@ -169,3 +170,17 @@ def rms_norm_forward(self, hidden_states: torch.Tensor):
 | 
			
		|||
        variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
 | 
			
		||||
        hidden_states = hidden_states * torch.rsqrt(variance + eps)
 | 
			
		||||
        return weight * hidden_states.to(input_dtype)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def layer_norm_forward(self, hidden_states: torch.Tensor):
 | 
			
		||||
    if hidden_states.device.type == 'xpu' and hidden_states.dtype in [torch.float, torch.half]:
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        hidden_size = math.prod(self.normalized_shape)
 | 
			
		||||
        x_2d = hidden_states.reshape(-1, hidden_size).contiguous()
 | 
			
		||||
        output = xe_addons.layer_norm(x_2d, self.weight, self.bias, self.eps)
 | 
			
		||||
        return output.reshape(hidden_states.shape)
 | 
			
		||||
    else:
 | 
			
		||||
        return torch.nn.functional.layer_norm(
 | 
			
		||||
            hidden_states, self.normalized_shape,
 | 
			
		||||
            self.weight, self.bias, self.eps
 | 
			
		||||
        )
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -13,39 +13,39 @@
 | 
			
		|||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import pytest
 | 
			
		||||
import gc
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from ipex_llm.transformers import AutoModelForCausalLM, AutoModel
 | 
			
		||||
from transformers import LlamaTokenizer, AutoTokenizer
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
device = os.environ['DEVICE']
 | 
			
		||||
print(f'Running on {device}')
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
PROMPT = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
 | 
			
		||||
TEST_MODEL_LIST = [
 | 
			
		||||
    ("Falcon-7B", AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH'))
 | 
			
		||||
]
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
class Test_Optimize_Gpu_Model:
 | 
			
		||||
    def setup_method(self):
 | 
			
		||||
        self.layer_outputs = []
 | 
			
		||||
        self.pre_layer_outputs = []
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
    def run_optimize_gpu_model(self, Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound):
 | 
			
		||||
        with torch.inference_mode():
 | 
			
		||||
            def pre_forward_hook(module, input, output, layer_name):
 | 
			
		||||
                self.pre_layer_outputs.append(output)
 | 
			
		||||
                
 | 
			
		||||
 | 
			
		||||
            def forward_hook(module, input, output, layer_name):
 | 
			
		||||
                self.layer_outputs.append(output)
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
            tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
            input_ids = tokenizer.encode(PROMPT, return_tensors="pt").to(device)
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
            model = Model.from_pretrained(model_path,
 | 
			
		||||
                                        load_in_4bit=True,
 | 
			
		||||
                                        optimize_model=False,
 | 
			
		||||
| 
						 | 
				
			
			@ -64,18 +64,18 @@ class Test_Optimize_Gpu_Model:
 | 
			
		|||
            # the list `layer_output` has only one element.
 | 
			
		||||
            layer_tensor = self.layer_outputs.pop()
 | 
			
		||||
            model.to('cpu')
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
            opt_model = Model.from_pretrained(model_path,
 | 
			
		||||
                                            load_in_4bit=True,
 | 
			
		||||
                                            optimize_model=True,
 | 
			
		||||
                                            trust_remote_code=True)
 | 
			
		||||
            opt_model = opt_model.to(device)
 | 
			
		||||
 
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
            def replace_forward_hook(module, input, output, layer_name):
 | 
			
		||||
                output = self.pre_layer_outputs[0]
 | 
			
		||||
                return output
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
            for layer_name, layer_module in opt_model.named_modules():
 | 
			
		||||
                if layer_name == layer_before_LayerNorm:
 | 
			
		||||
                    layer_module.register_forward_hook(
 | 
			
		||||
| 
						 | 
				
			
			@ -89,12 +89,12 @@ class Test_Optimize_Gpu_Model:
 | 
			
		|||
            # the list `layer_output` has only one element.
 | 
			
		||||
            opt_layer_tensor = self.layer_outputs[0]
 | 
			
		||||
            opt_model.to('cpu')
 | 
			
		||||
 
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
            LayerNorm_output_diff = []
 | 
			
		||||
            for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
 | 
			
		||||
                LayerNorm_output_diff.append(t1 - t2)
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
            max_diff_tensor = [torch.max(item).item() for item in LayerNorm_output_diff]
 | 
			
		||||
            print(max_diff_tensor)
 | 
			
		||||
            torch.xpu.empty_cache()
 | 
			
		||||
| 
						 | 
				
			
			@ -102,16 +102,16 @@ class Test_Optimize_Gpu_Model:
 | 
			
		|||
            del opt_model
 | 
			
		||||
            gc.collect()
 | 
			
		||||
            assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
 | 
			
		||||
   
 | 
			
		||||
 | 
			
		||||
    @pytest.mark.parametrize('Name, Model, Tokenizer, model_path',TEST_MODEL_LIST)
 | 
			
		||||
    def test_dynamic_functions(self, Name, Model, Tokenizer, model_path):
 | 
			
		||||
        if Name == "Falcon-7B":
 | 
			
		||||
            self.Falcon_7B_gpu_model(Name, Model, Tokenizer, model_path)
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    def Falcon_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
 | 
			
		||||
        # currently only compare the output of the last LayerNorm layer.
 | 
			
		||||
        layer_before_LayerNorm = "transformer.h.30"
 | 
			
		||||
        LayerNorm_layer = "transformer.h.31.input_layernorm"
 | 
			
		||||
        lower_bound = 0
 | 
			
		||||
        lower_bound = 1e-5
 | 
			
		||||
        self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound)
 | 
			
		||||
		Loading…
	
		Reference in a new issue