use new fused layer norm (#12553)
This commit is contained in:
		
							parent
							
								
									680ea7e4a8
								
							
						
					
					
						commit
						a608f26cc8
					
				
					 4 changed files with 38 additions and 41 deletions
				
			
		| 
						 | 
					@ -1296,10 +1296,9 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
				
			||||||
    trans_version = transformers.__version__
 | 
					    trans_version = transformers.__version__
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # convert all nn.LayerNorm
 | 
					    # convert all nn.LayerNorm
 | 
				
			||||||
    from ipex_llm.transformers.models.bloom import bloom_layer_norm_forward
 | 
					    from ipex_llm.transformers.models.common import layer_norm_forward
 | 
				
			||||||
    convert_forward(model,
 | 
					    convert_forward(model, nn.LayerNorm, layer_norm_forward)
 | 
				
			||||||
                    nn.LayerNorm,
 | 
					
 | 
				
			||||||
                    bloom_layer_norm_forward)
 | 
					 | 
				
			||||||
    from ipex_llm.transformers.models.llama import llama_rms_norm_forward
 | 
					    from ipex_llm.transformers.models.llama import llama_rms_norm_forward
 | 
				
			||||||
    from ipex_llm.transformers.models.llama import llama_mlp_forward
 | 
					    from ipex_llm.transformers.models.llama import llama_mlp_forward
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -64,23 +64,6 @@ def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training:
 | 
				
			||||||
    return out
 | 
					    return out
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def bloom_layer_norm_forward(self, hidden_states):
 | 
					 | 
				
			||||||
    if use_fused_layer_norm(hidden_states, self.training):
 | 
					 | 
				
			||||||
        import xe_addons
 | 
					 | 
				
			||||||
        result = xe_addons.fused_layer_norm(hidden_states,
 | 
					 | 
				
			||||||
                                            [self.weight.size(0)],
 | 
					 | 
				
			||||||
                                            self.weight,
 | 
					 | 
				
			||||||
                                            self.bias,
 | 
					 | 
				
			||||||
                                            self.eps)
 | 
					 | 
				
			||||||
        # if nelement == 0, means fused norm failed, go back to python implement.
 | 
					 | 
				
			||||||
        if result.nelement != 0:
 | 
					 | 
				
			||||||
            return result
 | 
					 | 
				
			||||||
    input_dtype = hidden_states.dtype
 | 
					 | 
				
			||||||
    result = F.layer_norm(hidden_states.to(self.weight.dtype),
 | 
					 | 
				
			||||||
                          self.normalized_shape, self.weight, self.bias, self.eps)
 | 
					 | 
				
			||||||
    return result.to(input_dtype)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
def bloom_attention_forward(
 | 
					def bloom_attention_forward(
 | 
				
			||||||
        self,
 | 
					        self,
 | 
				
			||||||
        hidden_states: torch.Tensor,
 | 
					        hidden_states: torch.Tensor,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -14,6 +14,7 @@
 | 
				
			||||||
# limitations under the License.
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import math
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
from typing import List
 | 
					from typing import List
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -159,7 +160,7 @@ def rms_norm_forward(self, hidden_states: torch.Tensor):
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        eps = self.epsilon
 | 
					        eps = self.epsilon
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if hidden_states.device.type == 'xpu':
 | 
					    if hidden_states.device.type == 'xpu' and hidden_states.dtype in [torch.float, torch.half]:
 | 
				
			||||||
        import xe_addons
 | 
					        import xe_addons
 | 
				
			||||||
        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
					        x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
 | 
				
			||||||
        output = xe_addons.rms_norm(weight, x_2d, eps)
 | 
					        output = xe_addons.rms_norm(weight, x_2d, eps)
 | 
				
			||||||
| 
						 | 
					@ -169,3 +170,17 @@ def rms_norm_forward(self, hidden_states: torch.Tensor):
 | 
				
			||||||
        variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
 | 
					        variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
 | 
				
			||||||
        hidden_states = hidden_states * torch.rsqrt(variance + eps)
 | 
					        hidden_states = hidden_states * torch.rsqrt(variance + eps)
 | 
				
			||||||
        return weight * hidden_states.to(input_dtype)
 | 
					        return weight * hidden_states.to(input_dtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def layer_norm_forward(self, hidden_states: torch.Tensor):
 | 
				
			||||||
 | 
					    if hidden_states.device.type == 'xpu' and hidden_states.dtype in [torch.float, torch.half]:
 | 
				
			||||||
 | 
					        import xe_addons
 | 
				
			||||||
 | 
					        hidden_size = math.prod(self.normalized_shape)
 | 
				
			||||||
 | 
					        x_2d = hidden_states.reshape(-1, hidden_size).contiguous()
 | 
				
			||||||
 | 
					        output = xe_addons.layer_norm(x_2d, self.weight, self.bias, self.eps)
 | 
				
			||||||
 | 
					        return output.reshape(hidden_states.shape)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        return torch.nn.functional.layer_norm(
 | 
				
			||||||
 | 
					            hidden_states, self.normalized_shape,
 | 
				
			||||||
 | 
					            self.weight, self.bias, self.eps
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -113,5 +113,5 @@ class Test_Optimize_Gpu_Model:
 | 
				
			||||||
        # currently only compare the output of the last LayerNorm layer.
 | 
					        # currently only compare the output of the last LayerNorm layer.
 | 
				
			||||||
        layer_before_LayerNorm = "transformer.h.30"
 | 
					        layer_before_LayerNorm = "transformer.h.30"
 | 
				
			||||||
        LayerNorm_layer = "transformer.h.31.input_layernorm"
 | 
					        LayerNorm_layer = "transformer.h.31.input_layernorm"
 | 
				
			||||||
        lower_bound = 0
 | 
					        lower_bound = 1e-5
 | 
				
			||||||
        self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound)
 | 
					        self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound)
 | 
				
			||||||
		Loading…
	
		Reference in a new issue