use new fused layer norm (#12553)

This commit is contained in:
Yishuo Wang 2024-12-17 13:52:35 +08:00 committed by GitHub
parent 680ea7e4a8
commit a608f26cc8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 38 additions and 41 deletions

View file

@ -1296,10 +1296,9 @@ def _optimize_post(model, lightweight_bmm=False):
trans_version = transformers.__version__ trans_version = transformers.__version__
# convert all nn.LayerNorm # convert all nn.LayerNorm
from ipex_llm.transformers.models.bloom import bloom_layer_norm_forward from ipex_llm.transformers.models.common import layer_norm_forward
convert_forward(model, convert_forward(model, nn.LayerNorm, layer_norm_forward)
nn.LayerNorm,
bloom_layer_norm_forward)
from ipex_llm.transformers.models.llama import llama_rms_norm_forward from ipex_llm.transformers.models.llama import llama_rms_norm_forward
from ipex_llm.transformers.models.llama import llama_mlp_forward from ipex_llm.transformers.models.llama import llama_mlp_forward

View file

@ -64,23 +64,6 @@ def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training:
return out return out
def bloom_layer_norm_forward(self, hidden_states):
if use_fused_layer_norm(hidden_states, self.training):
import xe_addons
result = xe_addons.fused_layer_norm(hidden_states,
[self.weight.size(0)],
self.weight,
self.bias,
self.eps)
# if nelement == 0, means fused norm failed, go back to python implement.
if result.nelement != 0:
return result
input_dtype = hidden_states.dtype
result = F.layer_norm(hidden_states.to(self.weight.dtype),
self.normalized_shape, self.weight, self.bias, self.eps)
return result.to(input_dtype)
def bloom_attention_forward( def bloom_attention_forward(
self, self,
hidden_states: torch.Tensor, hidden_states: torch.Tensor,

View file

@ -14,6 +14,7 @@
# limitations under the License. # limitations under the License.
import math
import torch import torch
from typing import List from typing import List
@ -159,7 +160,7 @@ def rms_norm_forward(self, hidden_states: torch.Tensor):
else: else:
eps = self.epsilon eps = self.epsilon
if hidden_states.device.type == 'xpu': if hidden_states.device.type == 'xpu' and hidden_states.dtype in [torch.float, torch.half]:
import xe_addons import xe_addons
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous() x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
output = xe_addons.rms_norm(weight, x_2d, eps) output = xe_addons.rms_norm(weight, x_2d, eps)
@ -169,3 +170,17 @@ def rms_norm_forward(self, hidden_states: torch.Tensor):
variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True) variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + eps) hidden_states = hidden_states * torch.rsqrt(variance + eps)
return weight * hidden_states.to(input_dtype) return weight * hidden_states.to(input_dtype)
def layer_norm_forward(self, hidden_states: torch.Tensor):
if hidden_states.device.type == 'xpu' and hidden_states.dtype in [torch.float, torch.half]:
import xe_addons
hidden_size = math.prod(self.normalized_shape)
x_2d = hidden_states.reshape(-1, hidden_size).contiguous()
output = xe_addons.layer_norm(x_2d, self.weight, self.bias, self.eps)
return output.reshape(hidden_states.shape)
else:
return torch.nn.functional.layer_norm(
hidden_states, self.normalized_shape,
self.weight, self.bias, self.eps
)

View file

@ -113,5 +113,5 @@ class Test_Optimize_Gpu_Model:
# currently only compare the output of the last LayerNorm layer. # currently only compare the output of the last LayerNorm layer.
layer_before_LayerNorm = "transformer.h.30" layer_before_LayerNorm = "transformer.h.30"
LayerNorm_layer = "transformer.h.31.input_layernorm" LayerNorm_layer = "transformer.h.31.input_layernorm"
lower_bound = 0 lower_bound = 1e-5
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound) self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound)